

MINNESOTA PARK (ICRR TO RANGE ROAD) STAGE 0 FEASIBILITY IMPROVEMENTS STUDY

RPC Contract No. ST-1.17 State Project No: H972216.1

June 28, 2017
TANGIPAHOA PARISH
Louisiana

Prepared For:

Regional Planning Commission for Jefferson, Orleans, Plaquemines, St. Bernard, St. Tammany and Tangipahoa Parishes

This document and the information contained herein is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads which may be implemented utilizing federal aid highway funds; and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409.

MINNESOTA PARK ROAD (ICRR TO RANGE ROAD IMRPOVEMENTS) STAGE 0 FEASIBILITY OPERATIONAL & SAFETY IMPROVEMENTS

Regional Planning Commission

RPC Contract No. ST-1.17 State Project No. H972216.1

RCLC Project No. 717-01

PREPARED FOR:

Regional Planning Commission

For Jefferson, Orleans, Plaquemines, St. Bernard, St. John, St. Charles, St. Tammany and Tangipahoa Parishes

And

Tangipahoa Parish Louisiana

PREPARED BY:

Richard C. Lambert Consultants, L.L.C. 900 West Causeway Approach Mandeville, LA 70471

In association with:

Vectura Consulting Services, LLC P.O. Box 14269 Baton Rouge, LA 70898

June, 2017

Table of Contents

Tabl	le of	f Contents	2
List	of F	igures	3
Exec	cutiv	ve Summary	4
		roduction	
1.	1 F	Project Overview	6
1.	2 F	Project Description	8
		Project Objectives	
1.	4	Purpose and Need	8
		ta Collection	
2.	1 (Overview of Data Collection Effort	9
2.	2 E	Existing Conditions	9
2.	.3 F	Project Meetings 1	1
3.0	Exi	sting and Proposed Land Use 1	2
		Existing Land Use 1	
3.	2 F	Proposed Land Use 1	2
		rrounding Community Elements 1	
4.	1	Cemeteries, Churches, Schools, Public Facilities	2
		Public Recreation Areas, Public Parks, Wildlife Refuges, Historic Sites 1	
5.0	Εn	vironmental Conditions 1	13
5.	1	Endangered Species 1	13
5.	2	Louisiana Scenic Rivers Act 1	13
5.	3 9	Significant Trees 1	4
5.	4 I	Hazardous Materials 1	4
5.	.5	Surrounding Community 1	4
		pposed Crosswalk and Roadway Improvements 1	
		Roadway Design Guidelines 1	
		Louisiana's Complete Streets Policy 1	
6.	.3 F	Proposed Corridor Improvements 1	5
7.0	Op	inion of Probable Cost & Implementation Phasing2	21
7.	1 E	Estimated Cost Methodology 2	21
7.	2 F	Project Implementation, Construction Phasing and Detours	22
7.	.3 F	Probable Construction Costs	22
8.0	Con	clusion 2	23
		Summary of Impacts 2	
8.	2 9	Summary of Preferred Alternate (Alternate 4)2	23
8.	3 9	Summary of Cost Estimates	23
		Appendix A Traffic Analysis (Traffic Study prepared by Vectura Consulting Se	ervices
		Appendix B Meeting Summaries	
		Appendix C Existing Roadway and Intersection Aerial Geometry	
		Appendix D Roadway Renderings Presented From Driver's Perspective	

Appendix E Proposed Roadway and Intersection Aerial Geometry

Appendix F Preliminary Scope and Budget Checklist, Environmental Checklist, and Opinion of Construction Cost

List of Figures

<u>Figure</u>	Page
1.1	Study Corridor Location Within Tangipahoa Parish6
1.2	Cities Near Study Area within Tangipahoa Parish7
2.1	Existing Aerial of Minnesota Park Road from ICRR to Range Road10
2.2	Existing Typical Asphalt Roadway Section along Minnesota Park Road10
6.1	Proposed Street View along Minnesota Park Road Looking East16
6.2	Proposed Street View along Range Road Looking North16
6.3	Proposed Street View along Range Road Looking North
6.4	Proposed Street View along Minnesota Park Road Looking East18
6.5	Proposed Typical Roadway Section with Turning Lanes18
6.6	Existing Street View along Minnesota Park Road Looking West19
6.7	Proposed Street View along Minnesota Park Road Looking West19
6.8	Proposed Typical Roadway Section with Two Way Left Turn Lane at 60' ROW19
6.9	Proposed Typical Roadway Section with Two Way Left Turn Lane at 80' ROW20
6.10	Proposed Typical Roadway Section with Sidewalk on Both Sides of Roadway20
6.11	Proposed Typical Roadway Section with Sidewalk on South Side of Roadway21

Executive Summary

The study corridor of Minnesota Park Road from the Illinois Central Railroad (ICRR) to Range Road was evaluated during a Project Committee Meeting for operation and safety improvements with Richard C. Lambert Consultants, LLC (RCLC) recommending the following proposed solutions:

- Remove the existing signal at Minnesota Park Road at Range Road and convert to roundabout (Alternate 1) or all-way stop.
- Widen existing roadway at intersection of Minnesota Park Road at Range Road to include dedicated turning lanes at existing intersection traffic signal (Alternate 2).
- Widen existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternate 3a with 60' ROW and Alternate 3b with 80' ROW).
- Add sidewalks along Minnesota Park Road (Alternate 4a with sidewalks along both sides
 of the roadway and 4b with a sidewalk along the south side of the roadway).

The study resulted in the following conclusions, which are further detailed in Section 6 of the report:

- If the signal was to be removed and an "All-Way Stop" installed at the intersection, for the 2020 Build year, there would only be an improvement in the South Approach on Range Road. However, the Level of Service (LOS) for the intersection would worsen from a "B" to a "C". For the 2040 build year the delays would worsen especially on the west approach along Minnesota Park Road. If the signal is removed, and a roundabout installed (Alternate 1), the LOS would improve to an "A" and the delays would be reduced on all approaches for the 2020 and 2040 build years.
- Widening existing roadway to include dedicated turning lanes for the existing traffic signal at the Minnesota Park Road and Range Road intersection (Alternate 2) will facilitate traffic movement. Turn lanes for left and right turning movements on Minnesota Park Road should help minimize delays by separating these turning movements at the intersection. A left turning lane and dedicated through lane should also be constructed to reduce traffic delays along Range Road's south approach.
- Widening existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternates 3a and 3b) would benefit the area along the Minnesota Park Road corridor; however, right-of-way acquisition would be very expensive and most probably cost prohibitive. In order to construct three 11 foot lanes, the right-of-way would typically be widened to 60 feet (Alternate 3a) if subsurface drainage were used or 80 feet (Alternate 3b) if side road ditches were to be utilized.
- Installation of sidewalks will allow pedestrians to safely proceed down the Minnesota Park Road corridor in order to visit various commercial establishments. Sidewalk installation along Minnesota Park Road can best be implemented by the construction of sub-surface drainage along the roadway due to limited right-of-way. Construction of a

- 5' wide sidewalk along one side of the roadway will be more cost effective than the construction of sidewalks along the north and south sides of Minnesota Park Road.
- As a result of the Project Committee Meeting, an Alternate 5 was added as a proposed corridor improvement. This alternative removes the signal at the intersection of Minnesota Park Road and Range Road converting it into a roundabout (Alternate 1) and installs a sidewalk along the south side of Minnesota Park Road (Alternate 4b).

The probable costs of construction for each Alternate are listed in the table below and are outlined in Sections 7 and 8 of the report with further details in Appendix F.

Alternates	Probable Construction Costs (without sidewalks)	Probable Construction Costs (with sidewalks north & south side)	Probable Construction Costs (sidewalk on south side)
Alternate 1 – Roundabout at Intersection	\$2,107,449.71	\$3,161,181.73	-
Alternate 2 – Turning Lanes at Intersection	\$1,537,177.69	\$2,252,207.01	-
Alternate 3a – Two Way Left Turn Lane with 60' ROW	\$2,447,845.98	\$2,779,439.72	-
Alternate 3b – Two Way Left Turn Lane with 80' ROW	\$2,237,148.64	\$2,441,139.17	-
Alternate 4a – Sidewalks on North and South sides of Minnesota Park Road	-	\$1,287,434.81	-
Alternate 4b – Sidewalks on South side of Minnesota Park Road	-	-	\$712,072.03
Alternate 5 – Roundabout at intersection with Sidewalk along south side of Minnesota Park Road	-	-	\$2,638,746.51

The recommendation from the Project Management Committee is to combine Alternative 1 (Roundabout at Intersection) with Alternate 4b (Sidewalk on South side of roadway) as Alternate 5. The probable cost of construction for Alternate 5 is \$2,638,746.51 which is detailed in the report.

1.0 Introduction

1.1 Project Overview

The Regional Planning Commission (RPC) has contracted with Richard C. Lambert Consultants, LLC (RCLC) in association with Vectura Consulting Services, LLC (Vectura) to perform a Stage 0 Feasibility Study for operation and safety improvements along Minnesota Park Road from Illinois Central Railroad (ICRR) to Range Road in Tangipahoa Parish, Louisiana. The 0.41 mile stretch of roadway exists as a two lane section with 11 foot lanes within an apparent 50 foot right-of-way having a speed limit of 35mph. Improvements to this route are intended to promote safety and increase operational function of the Minnesota Park Road/Range Road intersection and along the route where vehicular delays are considered excessive. These improvements should also enhance access to the Hammond Square Mall and neighboring commercial establishments.

As shown in Figure 1.1 below, the western limit of the study is the Illinois Central Railroad (ICRR). The eastern limit is Range Road which is 0.51 miles east of the US 51 Business (SW. Railroad Avenue). The City of Hammond is located in the south-central portion of Tangipahoa Parish, Louisiana as shown in Figure 1.2.

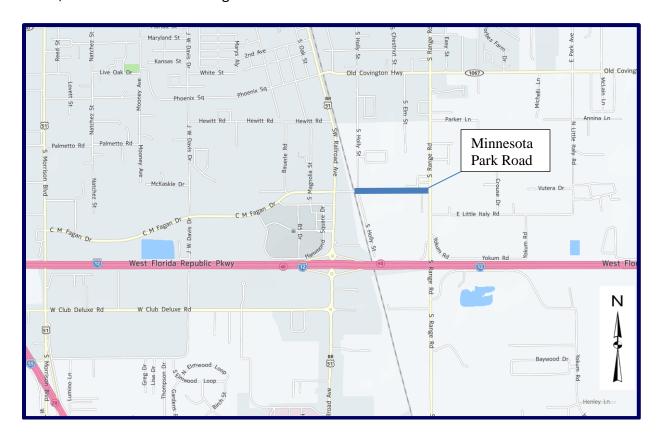


Figure 1.1 (Source: Yahoo Maps)

(Source: Louisiana Graphic Information Center)

The Minnesota Park Road corridor from ICRR to Range Road is a highly trafficked roadway with many new developments. This corridor was studied for implementation of operational and safety improvements. From west to east, the intersections and major commercial driveways are listed below and shown on Figure 1.3.

- 1. ICRR at Minnesota Park Road (intersection).
- 2. S. Holly Street at Minnesota Park Road (intersection).
- Summerfield Retirement Community at Minnesota Park Road (commercial Driveway).
- 4. Ryan's Deli at Minnesota Park Road (commercial driveway).
- 5. Range Road at Minnesota Park Road (intersection).

Of these five locations, the Range Road at Minnesota Park Road interchange was analyzed as part of this Stage 0 Feasibility Study. Results from that study recommend constructing a roundabout at the Range Road and Minnesota Park Road intersection.

1.2 Project Description

In accordance with RPC's scope requirements, the Stage 0 Feasibility Study includes the following components:

- Site investigations and data collections of existing physical, engineering, and environmental features of the site
- A formal traffic study to obtain existing and projected future traffic variables
- Overall conceptual engineering designs and typical road sections for the study area
- Development of Environmental Inventory
- Preliminary quantities and unit cost estimates for each element of the conceptual design plans
- Solicitation of input on the project from public and private agencies and the community
- Final Report

Several design alternatives were analyzed for the study area. The preferred alternate, including intersection improvements, are shown as conceptual plans superimposed on aerial backgrounds. These layouts were developed in a collaborative effort with the Regional Planning Commission (RPC) and Tangipahoa Parish Government. These alternatives are discussed in further detail later within this report.

1.3 Project Objectives

On behalf of Tangipahoa Parish Government, the Regional Planning Commission is evaluating the possibility of incorporating solutions to promote operational and safety improvements along Minnesota Park Road. Proposed improvements incorporate suggestions from Parish constituents and public officials to enhance operation and safety along Minnesota Park Road. To facilitate this endeavor, a meeting was conducted to solicit questions and suggestions from the RPC, Tangipahoa Parish Government, and LADOTD personnel.

1.4 Purpose and Need

The Minnesota Park Road corridor from ICRR to Range Road and the intersection of Minnesota Park Road at Range Road currently experiences operational and safety deficiencies. The existing AM Peak Level of Service and Delay Analysis shows an average 12.4 second delay with a Level of Service B for all approaches. The Minnesota Park Road approach operates with a delay of 14.8 seconds, a Level of Service B, and a queue length of 173 feet. The south approach of Range Road experiences the longest queue length of 305 feet. The existing PM Peak Level of Service and Delay Analysis shows an average 12.4 second delay with a Level of Service B for all approaches. The Minnesota Park Road approach operates with a delay of 15.9 seconds, a Level of Service B, and a queue length of 203 feet. The north approach of Range Road experiences the longest queue length of 217 feet. By the 2040 design year, the current geometric configuration will operate with a 63.7 second delay with a Level of Service E in the AM Peak Hour and a 59.1 second delay with a Level of Service E in the PM Peak hour.

Over a three year period from January 1, 2013 and December 31, 2015, the corridor has documented 31 crashes. According to the definition of an abnormal location, from the Vectura

traffic study, both the Minnesota Park Road Segment and the intersection of Minnesota Park Road at Range Road had abnormal crash rates when compared to the years' statewide average. The majority of these crashes are rear-end collisions at the intersection of Minnesota Park Road at Range Road occurring from 3pm to 6pm during the after school traffic period and evening rush hour. Four of the 22 intersection crashes are reported as being left-turn correctable crashes. The locations of these crashes are listed in the Traffic Study presented in Appendix A.

Tangipahoa Parish Government officials stated that the traffic signal at the intersection of Minnesota Park Road and Range Road experiences intermittent outages. Since this is the only traffic signal within Tangipahoa Parish which is maintained by Tangipahoa Parish Government, parts are normally ordered on an as-needed basis. The shipping of these parts usually delays the repairs resulting in a long down-time for the traffic signal. This results in the intersection being an All Stop Controlled Intersection during these down times which adds to the existing delays. Therefore due to these deficiencies, roadway geometry and safety improvements should be implemented.

2.0 Data Collection

2.1 Overview of Data Collection Effort

Information related to the project area was available through a direct relationship with the New Orleans Regional Planning Commission (RPC), Louisiana Department of Transportation and Development (LADOTD), and the Tangipahoa Parish Government. Geographic Information Systems (GIS), inclusive of high resolution aerial images, Hammond City limits, street locations, and other data, was made available by the RPC and LADOTD.

A kickoff meeting was conducted between the RPC, Tangipahoa Parish representatives, and the design team (RCLC and Vectura). The kickoff meeting was to discuss the purpose and need for the desired improvements and the project scope. A project management committee meeting was also conducted between RPC, Tangipahoa Parish representatives, and RCLC to discuss the proposed alternatives and draft feasibility study. Meeting summaries are included in Appendix B.

Existing AM and PM peak hour traffic counts for vehicles were conducted at the Minnesota Park Road and Range Road intersection from February $12^{th} - 18^{th}$, 2017. The data and results of the traffic operations analysis performed by Vectura Consulting Services, LLC are presented in Appendix A.

2.2 Existing Conditions

Shown below in Figure 2.1 is the aerial image of the existing intersection of ICRR at Minnesota Park Road and Range Road at Minnesota Park Road. The image is also presented in Appendix C. According to the Vectura traffic study, the Minnesota Park Road at Range Road intersection is currently functioning with an acceptable Level of Service (Level C or better).

Figure 2.1 - Existing ICRR at Minnesota Park Road and Range Road at Minnesota Park Road (Source: Google Earth)

The Range Road at Minnesota Park Road intersection does not have turn lanes along Minnesota Park Road or along Range Road, which has a speed limit of 35mph. Thus, turning movements onto these streets are producing delays, and result in rear-end collisions. Rear-end collisions are documented in the crash data presented in Appendix A.

Minnesota Park Road is a two lane asphalt roadway with a speed limit of 35mph, which travels in a west to east direction. The existing lanes are 11 feet wide. While this roadway functions as a Major Urban Collector classification, it lacks shoulders or curbing, and has an insufficient apparent right-of-way width of 50 feet. Typically two lane roads with side road ditches have a 60 feet right-of-way width. Although narrow lanes can decrease speed, they can also increase the incidence of vehicles veering off the edge of the road. The typical roadway section for the existing condition of Minnesota Road is shown below in Figure 2.2.

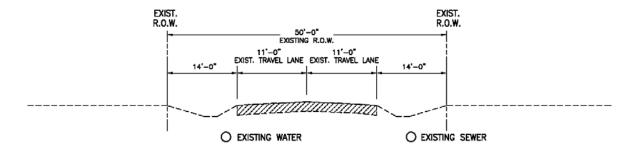


Figure 2.2 – Existing Typical Asphalt Roadway Section along Minnesota Park Road (Source: RCLC)

The typical section above also shows the location of existing water and sewer lines. The existing waterline runs along the south edge of the pavement with water valves located in the pavement. The existing sewer line runs along the north side of the roadway within the existing ditch.

2.3 Project Meetings

The kickoff meeting was conducted to familiarize the Project Committee Members with the project goals and included representatives from the Regional Planning Commission, Tangipahoa Parish Government, Richard C. Lambert Consultants, LLC, and Vectura Consulting Services. A summary of that meeting is available in Appendix B. The purpose of the meeting was to discuss the project limits, existing roadway conditions, and develop practical improvements.

The general consensus of the meeting was that Minnesota Park Road is narrow, has experienced several crashes, has high traffic and pedestrian volumes, and experiences delays. Improvements to the corridor should be effective, minimize construction costs, and preferably performed within the current right-of-way.

Several alternatives for corridor improvements were discussed at the meeting. Suggested improvements to Minnesota Park Road resulting from this meeting were as follows:

- Remove the existing signal at Minnesota Park Road at Range Road and convert to roundabout (Alternate 1) or all-way stop.
- Widen existing roadway at intersection of Minnesota Park Road at Range Road to include dedicated turning lanes at existing intersection traffic signal (Alternate 2).
- Widen existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternate 3a with 60' ROW and Alternate 3b with 80' ROW).
- Add sidewalks along Minnesota Park Road (Alternate 4a-both sides of roadway and Alternative 4b-south side of roadway only).

Some of the improvements suggested above were evaluated as part of the Traffic Analysis Report prepared by Vectura Consulting Services, LLC. The traffic study is included in Appendix A. Recommended improvements based on those suggested above were evaluated by Richard Lambert Consultants, LLC and Vectura Consulting Services, LLC and are discussed in more detail in Section 6 later in this report.

A telephone conversation took place between Richard C. Lambert Consultants, LLC and ICRR employee, John Denning, regarding the design and permit criteria needed for a sidewalk crossing over the ICRR. A telephone conversation took place between Richard C. Lambert Consultants, LLC and the Department of Transportation and Development (DOTD) employee, Gary Leblanc, to discuss the new specifications for a complete streets program for Minnesota Park Road. An email was sent to summarize this discussion. A summary of these conversations is available in Appendix B.

A Project Committee Meeting between Regional Planning Commission, Tangipahoa Parish Government, and Richard C. Lambert Consultants, LLC was conducted to discuss the draft

report and proposed alternatives including the complete streets program. The general consensus of the meeting was to focus on a hybrid of the various alternatives incorporated herein. This resulted in Alternate 5 which is discussed in more detail in Section 6 of this report. A summary of that meeting is available in Appendix B.

A final Project Committee Meeting between Regional Planning Commission, Tangipahoa Parish Government, DOTD and Richard C. Lambert Consultants, LLC was conducted to discuss the revised draft report, and feasibility of the alternates in order to finalize the report. A summary of that meeting is available in Appendix B.

3.0 Existing and Proposed Land Use

3.1 Existing Land Use

Existing land use along the Minnesota Park Road corridor from ICRR to Range Road is primarily residential and commercial. There are private residents, an assisted senior living complex (Summerfield of Hammond), a gas station and deli (Ryan's Deli), a mobile home park, an apartment complex, and a parcel containing a cell phone tower.

3.2 Proposed Land Use

Proposed land use for the corridor will be consistent with the existing land use. It is the intention of Tangipahoa Parish Government and the RPC that improvements will ease traffic congestion and ultimately allow residents (traffic and pedestrians) to easily reach neighboring developments such as Hammond Square Mall.

4.0 Surrounding Community Elements

4.1 Cemeteries, Churches, Schools, Public Facilities

The Minnesota Park Road corridor is categorized as a Major Urban Collector roadway. Its function is to connect local roads to larger arterials such as SW Railroad Avenue (US 51 Business) and ultimately to I-12. The connection of Minnesota Park Road to Range Road and SW Railroad Avenue promotes access to community amenities, businesses, and public facilities. Along the Minnesota Park Road route, or within a ½ mile radius, are such facilities and are listed as categorized below.

Schools: Oaks Montessori School

<u>Churches</u>: Oak Tree Church, Northshore Community Fellowship,

Happy Woods Church of God, First True Love World Outreach, St. James African Methodist Episcopal Church

<u>Cemeteries</u>: Holly Gardens Cemetery
Public Facilities: National Guard Armory

4.2 Public Recreation Areas, Public Parks, Wildlife Refuges, Historic Sites

Just as Minnesota Park Road promotes access for businesses and community assets listed above, it also promotes access for public recreation activities and sites. While there are no facilities located along the route or within ½ mile, facilities located within a mile are listed below.

<u>Public Parks</u>: Zemurray Park, Clarke Park

Historical Site: McGehee House

5.0 Environmental Conditions

5.1 Endangered Species

In 1973, Congress passed the Endangered Species Act. This act recognizes species of fish, wildlife, and plants in the United States that have become extinct as a result of economic growth and development due to insufficient concern and conservation. Other species of fish, wildlife, and plants have depleted in numbers where they are in danger of, or threatened with, extinction. Since these species of fish, wildlife, and plants are of esthetic, ecological, educational, historical, recreational, and scientific value to the United States and its people, they have been listed and protected by the federal government. The intended purpose of the Act is to provide a means by which the ecosystems upon which endangered and threatened species depend may be conserved and to provide a program for the conservation of those species.

Since the Minnesota Park Road corridor between ICRR and Range Road is within a developed area and not directly connected to any body of water, the possibility of disturbing a threatened or endangered species is unlikely.

5.2 Louisiana Scenic Rivers Act

Louisiana currently has 52 streams, rivers, and bayous totaling up to more than 3,000 miles of the Louisiana Natural and Scenic Rivers in the system. To protect these natural and scenic rivers in Louisiana, the State Legislature adopted the Louisiana Natural and Scenic Rivers Act in 1970. The System was developed for the purpose of preserving, protecting, developing, reclaiming, and enhancing the wilderness qualities, scenic beauties, and ecological regimes of certain free-flowing Louisiana streams. In order to preserve these rivers and their natural resources, activities within, adjacent to, or nearby a scenic river will require a Scenic Rivers Permit through the Louisiana Department of Wildlife and Fisheries. However, the nearest river is Ponchatoula Creek which is over 0.7 miles to the southeast of Minnesota Park Road and is not designated as a Scenic River.

As the Minnesota Park Road corridor between ICRR and Range Road is not directly connected or adjacent to a stream or river, no Scenic Rivers Permit should be required for this project. Ponchatoula Creek, the only body of water near the project, is located ¾ mile away and should not be affected.

5.3 Significant Trees

Per LADOTD's EDSM I.1.1.21, a significant tree can be defined as:

"A significant tree is a Live Oak, Red Oak, White Oak, Magnolia or Cypress that is considered aesthetically important, 18" or greater in diameter at breast height (4'-6" above the ground), and having a form that separates it from the surrounding vegetation or is considered historic. A historic tree is a tree that stands at a place where an event of historic significance occurred that had local, regional, or national importance. A tree may also be considered historic if it has taken on a legendary stature to the community; mentioned in literature or documents of historic value; considered unusual due to size, age or has landmark status. Significant trees must be in good health and not in a declining condition."

During field reconnaissance, several trees of the type designated as Oak trees were noted in the area. However, these trees currently have diameters less than 18" and are not considered significant trees.

5.4 Hazardous Materials

Existence of hazardous materials in the work area has not been documented. However, it is possible that hazardous materials detour from I-12 at any point.

5.4.1 Storage Tanks, CERCLIS, ERNS, Enforcement, and Compliance

Existence of storage tanks in the roadway right-of-way area is not documented. Fuel storage tanks at gas stations along Minnesota Park Road are not listed on Louisiana Department of Environmental Quality Leaking Underground Storage Tank program.

5.4.2 Manufacturing Facilities

Research has not shown a manufacturing facility located along Minnesota Park Road.

5.5 Surrounding Community

The surrounding community consists of churches, schools, a hospital, public recreation areas, single family dwellings, and commerce areas for shopping and dining.

6.0 Proposed Sidewalks and Roadway Improvements

6.1 Roadway Design Guidelines

Minnesota Park Road is currently classified under the Federal Highway System as a Major Urban Collector. Design improvements should conform to Federal and State guidelines set forth within this roadway classification. Any derivation from these guidelines will require a design exception from the LADOTD Chief Engineer in order to receive federal funds.

6.2 Louisiana's Complete Streets Policy

Recommendations should enable safe access for all users including motor vehicles, pedestrians, and bicyclists while also enhancing mobility for children, the elderly, and people with disabilities.

6.3 Proposed Corridor Improvements

Improvements along the Minnesota Park Road route from ICRR to Range Road should incorporate upgrades in accordance with the minimum guidelines for a Major Urban Collector Roadway classification. Per Section 2.3 of this report, several alternatives for improvements were suggested and are presented in detail as follows. These recommendations are based on the long term improvements for a build out year of 2040 as evaluated in the Vectura Consulting Services, LLC Traffic Study which is included in Appendix A.

- Remove the existing signal at Minnesota Park Road at Range Road and convert to roundabout (Alternate 1) or all-way stop.
- Widen existing roadway at intersection of Minnesota Park Road at Range Road to include dedicated turning lanes at existing intersection traffic signal (Alternate 2).
- Widen existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternate 3a with 60' ROW and Alternate 3b with 80' ROW).
- Add sidewalks along Minnesota Park Road (Alternate 4a-both sides of roadway and Alternative 4b-south side of roadway only).

6.3.1 Remove the existing signal at Minnesota Park Road at Range Road and convert to all-way stop or roundabout.

Tables 1 and 2 below, from information in the traffic study by Vectura Consulting Services, LLC contained in Appendix A, show the AM and PM Peak Period Level of Service and Delay Analysis. If the signal was to be removed and an "All-Way Stop" installed at the intersection for the 2020 Build year, there would only be an improvement in the South Approach on Range Road. However, the Level of Service (LOS) for the intersection would worsen from a "B" to a "C". For the 2040 build year the delays would worsen especially on the west approach along Minnesota Park Road. If additional turning lanes for each approach were constructed for the "All-Way Stop" condition, the 2020 design year would have limited improvements only to the Minnesota Park Road Approach. The 2040 design year would see minimal improvements to the North Approach on Range Road and the Minnesota Park Road Approach. However, due to right-of-way restrictions, close proximity of existing buildings, and the associated costs for construction, not all of the turning lanes would be able to be constructed. This would remove the improvements to the delay times for the approaches.

If the signal is removed, and a single-lane roundabout installed (Alternate 1), the LOS would improve to an "A" and the delays would be reduced on all approaches. The installation of a roundabout provides increased safety due to the reduction in the severity of angle crashes, lower speeds, and reduced conflicts. Additionally, the potential for many hazardous conflicts, such as right angle, left turn, and head-on crashes are eliminated with the installation of a roundabout. The Vectura traffic study recommends a single-lane roundabout at the intersection of Minnesota Park Road and Range Road for the lowest stopped delay / queues and improved safety. The Right-of-way required for construction of the roundabout would be approximately 0.34 acres.

Table 1: AM Peak Period Level of Service and Delay Analysis in seconds (Vectura)

Approach	201 Exist		202 No Bi		2020 I All-V STO	Vay	2020 Round		204 No Bi		204 Bui All-W STC	ld /ay	2040 Round	
S	12.1	В	14.2	В	12.7	В	1.7	Α	65.1	Е	21.1	С	5.4	Α
N	11.2	В	11.0	В	18.5	С	3.1	Α	89.4	F	33.5	D	9.5	Α
W	14.8	В	15.8	В	29.4	D	1.6	Α	25.5	C	58.6	F	2.5	Α
ALL	12.4	В	13.6	В	18.4	С	2.1	Α	63.7	Ε	33.6	D	6.0	Α

Table 2: PM Peak Period Level of Service and Delay Analysis in seconds (Vectura)

Approach	201 Exist		202 No Bi		2020 I All-V STO	Vay	2020 Round	Build labout	204 No Bi	_	204 Bui All-W STC	ld /ay	2040 Round	Build labout
S	12.2	В	14.8	В	13.5	В	2.0	Α	71.8	Е	20.9	С	2.9	Α
N	9.7	Α	12.0	В	26.3	D	2.4	Α	42.4	D	64.5	F	3.9	Α
W	15.9	В	17.3	В	28.4	D	2.4	Α	62.5	Е	63.2	F	3.2	Α
ALL	12.4	В	14.5	В	22.1	C	2.2	Α	59.1	Е	47.7	Е	3.3	Α

<u>Figure 6.1 - Proposed Street View along Minnesota</u>

<u>Park Road at Range Road Looking East All-Way Stop</u>

(Source: RCLC)

Figure 6.2 - Proposed Street View along Range Road at Minnesota Park Road Looking North All-Way Stop (Source: RCLC)

Figures 6.1 and 6.2 are renderings of the intersection showing proposed stop signs and stop bars instead of the current traffic signal. Based upon past experiences, constructability for the roundabout would be better with an offset design. See Appendix E for renderings of aerial view and proposed roundabout at Minnesota Park Road and Range Road.

6.3.2 Widen existing roadway at intersection to include dedicated turning lanes at intersection signal (Alternate 2).

The intersection of Minnesota Park Road and Range Road can experience significant delays during high traffic periods. Implementation of turn lanes will facilitate traffic movement, however, may not necessarily reduce the number of rear-end collisions at the intersection. Turn lanes for left and right turning movements on Minnesota Park Road should help minimize delays by separating these turning movements at the intersection. A left turning lane and dedicated through lane should also be constructed to reduce traffic delays along Range Road's south approach. Table 3 and 4 below, from information in the traffic study by Vectura Consulting Services, LLC contained in Appendix A, show the AM and PM Peak Period Level of Service and Delay Analysis for this scenario.

Table 3: AM Peak Period Level of Service and Delay Analysis in seconds (Vectura)

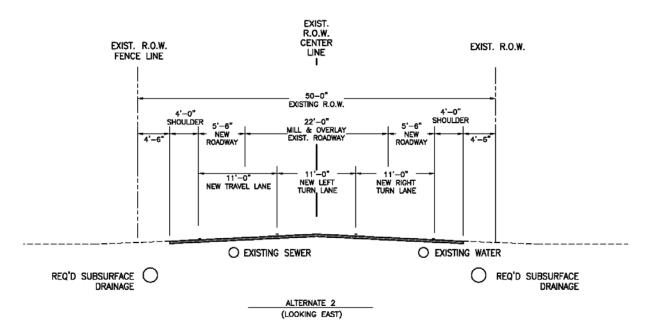
Approach	201 Exist		202 No Bi		2020 Build Signal w/ NBL, EBR, EBL		2040 No Build		2040 Build Signal w/ NBL, EBR, EBL	
S	12.1	В	14.2	В	6.9	Α	65.1	Е	10.7	В
N	11.2	В	11.0	В	10.6	В	89.4	F	24.0	С
W	14.8	В	15.8	В	9.7	Α	25.5	С	10.4	В
ALL	12.4	В	13.6	В	8.7	Α	63.7	Ε	14.8	В

Table 4: PM Peak Period Level of Service and Delay Analysis in seconds (Vectura)

Approach	201 Exist		202 No B		2020 Build Signal w/ NBL, EBR, EBL		2040 No Build		2040 Build Signal w/ NBL, EBR, EBL	
S	12.2	В	14.8	В	7.2	Α	71.8	Ε	9.0	Α
N	9.7	Α	12.0	В	10.6	В	42.4	D	25.1	С
W	15.9	В	17.3	В	10.6	В	62.5	Е	13.3	В
ALL	12.4	В	14.5	В	9.3	Α	59.1	Ε	15.7	В

Improvements should include the addition of turn lanes, striping, relocating utilities and power poles if necessary, implementing drainage improvements along the pavement widening, and upgrading directional signage. As the signal currently exists with the correct signal head configuration, the only modifications would be the installation of additional signage and the possible inclusion of an additional timing phase facilitating Minnesota Park Road right turns simultaneously with Range Road left turns. Figure 6.3 presents a driver's perspective heading northbound along Range Road approaching Minnesota Park Road. Figure 6.4 presents a driver's perspective heading eastbound along Minnesota Park Road approaching Range Road. Figure 6.5 presents the typical section for the layout along Minnesota Park Road. The 4' shoulder shown in the typical section could be removed with an approved Design Exception form LADOTD. Currently there is no shoulder along Minnesota Park Road, to which the

inclusion of one would be considered a safety improvement. These lane renderings are shown in a larger format in Appendix D. An aerial view of these improvements is shown in Appendix E.


Figure 6.3 - Proposed Street View along Range Road

At Minnesota Park Road Looking North

(Source: RCLC)

Figure 6.4 - Proposed Street View along Minnesota
Park Road at Range Road Looking East
(Source: RCLC)

<u>Figure 6.5 – Proposed Typical Roadway Section with Turning Lanes along Minnesota Park Road</u> (Source: RCLC)

6.3.3 Widen existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternates 3a and 3b).

Although a 3-lane roadway section would benefit the area along the Minnesota Park Road corridor, right-of-way acquisition would be very expensive and most probably cost prohibitive. In order to construct three 11 foot lanes, the right-of-way would typically be widened to 60 feet (Alternate 3a) if subsurface drainage were used or 80 feet (Alternate 3b) if side road ditches were to be utilized. The cost for the additional right-of-way considering a \$5.00 per square foot

cost for acquisition would total from \$224,000 to provide a 60' right-of-way to \$602,000 to provide an 80' right-of-way. This value does not include actual construction costs associated with the roadway widening or any necessary drainage improvements. These costs are provided in Section 8 of the report. Figure 6.7 shows the driver's view of a 3 lane roadway section which contrasts the existing two lane roadway section shown in Figure 6.6. Figure 6.8 and 6.9 show the typical sections for this proposed improvement with 60' of right-of-way (Alternate 3a) and 80' of right-of-way (Alternate 3b) respectively. A larger scale format of the 3-lane roadway is presented in Appendix D. Figure 6.7 also shows that right-of-way acquisition will also take up a substantial of residents backyards.

Figure 6.6 - Existing Street View along
Minnesota Park Road Looking West
(Source: RCLC)

Figure 6.7 - Proposed Street View along

Minnesota Park Road Looking West

(Source: RCLC)

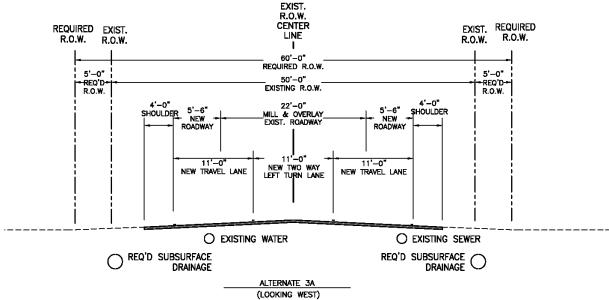


Figure 6.8 – Proposed Typical Roadway Section for Two Way Left Turn Lane at 60' ROW along Minnesota Park Road (Source: RCLC)

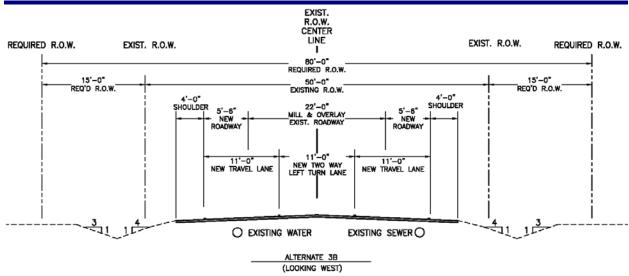


Figure 6.9 – Proposed Typical Roadway Section for Two Way Left Turn Lane at 80' ROW along Minnesota Park Road (Source: RCLC)

Based on the perspective of Figures 6.7 and 2.2, existing right-of-way is very limited. Roadway widening improvements would undoubtedly affect the costs to maintain the water and sewer lines which will be located under the roadway. Widening of the roadway will also need to incorporate subsurface drainage. Due to these issues, further traffic analysis was not included in the scope of this study.

6.3.4 Add sidewalks along Minnesota Park Road (Alternates 4a and 4b).

The installation of sidewalks along Minnesota Park Road can best be implemented by the construction of sub-surface drainage along the roadway. The sidewalks will allow pedestrians to safely proceed down the Minnesota Park Road corridor in order to visits the various commercial establishments. Construction of sidewalk along both sides of Minnesota Park Road will result in utility relocations and encroachments into residents' yards. Figure 6.10 presents the typical section for the sidewalk installation.

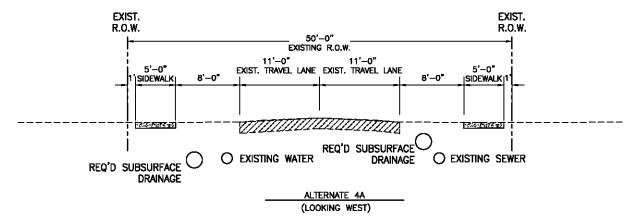


Figure 6.10 – Typical Roadway Section with Proposed Sidewalks along Minnesota Park Road (Source: RCLC)

Construction of a 5' wide sidewalk along one side of the roadway may be more cost effective than the construction of sidewalks along the north and south side of Minnesota Park Road. Due to limited right-of-way width and several buildings in close proximity to the existing right-of-way line, it will be very difficult and costly to implement roadway widening improvements and sidewalk improvements. The south side of the roadway was chosen over the north side for the sidewalk installation due to the location of the existing sewer line on the north side of the roadway to avoid utility relocation. Figure 6.11 presents the typical section for the sidewalk installation on the south side of the roadway.

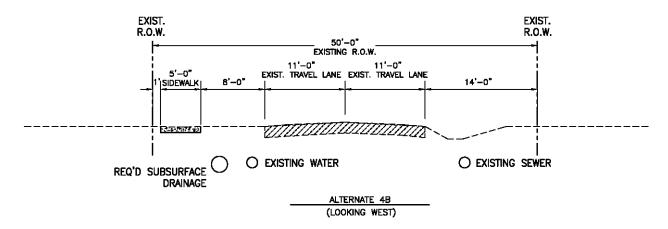


Figure 6.11 – Typical Roadway Section with Proposed Sidewalk along the south side of Minnesota Park Road (Source: RCLC)

The options presented above are all reasonable improvements to enhance capacity and safety. However, due to the narrow right-of-way and high costs involved to purchase the land to expand the right-of-way for some of the suggested alternatives, most of these improvements are impractical in the short and long term due to budget constraints.

6.3.5 Convert intersection of Minnesota Park Road and Range Road to a Roundabout and incorporate a sidewalk along the south side of Minnesota Park Road (Alternate 5).

As discussed in the Project Committee Meeting, Alternate 5 was added as a proposed corridor improvement. This alternative removes the signal at the intersection of Minnesota Park Road at Range Road converting it into a single-lane roundabout (Alternate 1) and installs a sidewalk along the south side of Minnesota Park Road (Alternate 4b). Therefore, only minimal right of way at the intersection of Minnesota Park Road and Range Road would be required as discussed in Alternate 1.

7.0 Opinion of Probable Construction Cost

7.1 Estimated Cost Methodology

An estimated opinion of probable construction costs was developed for several alternatives to implement improvements at the intersection of Minnesota Park Road at Range Road and along the Minnesota Park Road corridor. These estimated construction costs were derived from

approximating roadway and related infrastructure quantities based on LADOTD standard pay items and associated LADOTD weighted average unit prices.

If roadway widening to allow for 11' travel lanes is within budget, for cost estimating purposes the suggested typical roadway section consisted of the following:

- 2" Superpave Asphaltic Wearing Course Overlay
- 4" Superpave Asphaltic Binder Course
- 12" Class 2 Base Course (Crushed Stone or Recycled Concrete)

This suggested asphalt pavement section is based on past projects in the area. Geotechnical Engineering investigations should be performed prior to implementing design of any alternatives presented in this report.

Breakdowns of the costs for each alternative are shown below in Section 8.3 and on the Stage 0 Preliminary Scope and Budget Checklist in Appendix F. Costs include a contingency for unforeseen conditions during construction, and costs for necessary topographical surveying, environmental services, geotechnical engineering, roadway design/engineering, and construction engineering and inspection (CE&I).

7.2 Project Implementation, Construction Phasing and Detours

Construction of the sidewalk should be able to be applied quickly with minimal delays. However, constructing the intersection improvements of turning lanes or a roundabout at Minnesota Park Road and Range Road will take many months and involve considerable traffic delays. These improvements will require sophisticated construction sequencing to phase construction and detour traffic as required to minimize delays, but to also allow for the quickest construction possible.

7.3 Probable Construction Costs

The probable costs of construction for each Alternate are listed in the table below.

Alternates	Probable Construction Costs (without sidewalks)	Probable Construction Costs (with sidewalks north & south side)	Probable Construction Costs (sidewalk on south side)
Alternate 1 – Roundabout at Intersection	\$2,107,449.71	\$3,161,181.73	-
Alternate 2 – Turning Lanes at Intersection	\$1,537,177.69	\$2,252,207.01	-
Alternate 3a – Two Way Left Turn Lane with 60' ROW	\$2,447,845.98	\$2,779,439.72	-
Alternate 3b – Two Way Left Turn Lane with 80' ROW	\$2,237,148.64	\$2,441,139.17	-

Alternates	Probable Construction Costs (without sidewalks)	Probable Construction Costs (with sidewalks north & south side)	Probable Construction Costs (sidewalk on south side)
Alternate 4a – Sidewalks on North and South sides of Minnesota Park Road	-	\$1,287,434.81	-
Alternate 4b – Sidewalks on South side of Minnesota Park Road	-	-	\$712,072.03
Alternate 5 – Roundabout at intersection with Sidewalk along south side of Minnesota Park Road	-	-	\$2,638,746.51

8.0 Conclusion

8.1 Summary of Impacts

Implementation of any of the suggested improvements is intended to enhance capacity and safety of the Minnesota Park Road corridor. Listed below in Section 8.2 are the improvements believed to be the most advantageous when considering available funding.

8.2 Summary of Projected Improvements

As a result of data gathering, meeting processes and estimated probable construction cost projections, the overall consensus was to rank the improvements in the following order:

- Remove the existing signal at Minnesota Park Road at Range Road and convert to roundabout and installation of a sidewalk along the south side of Minnesota Park Road (Alternate 5).
- 2. Remove the existing signal at Minnesota Park Road at Range Road and convert to roundabout (Alternate 1).
- 3. If not feasible for roundabout construction due to budgetary constraints and due to right-of-way acquisition, widen existing roadway at intersection to include dedicated turning lanes at intersection signal (Alternate 2).
- 4. Add sidewalks along Minnesota Park Road (Alternates 4a and 4b).
- 5. Widen existing roadway to include a Two Way Left Turn Lane along Minnesota Park Road (Alternates 3a and 3b).

8.3 Summary of Probable Construction Cost Estimates

Opinions of Probable Construction Costs for the improvements to the Minnesota Park Road corridor listed above are presented in the STAGE 0 Environmental Checklist and the STAGE 0 Preliminary Scope and Budget Checklist in Appendix F.

Values presented are based on historical cost data and quantities estimated from the preliminary layout, anticipated utility relocations, costs for design and construction oversight,

and reasonable contingencies. The Opinion of Probable Construction Cost to implement sidewalks (Alternate 4a and 4b) along the Minnesota Park Road corridor is estimated at \$1,287,000 and \$712,000 respectively. Adding turn lanes (Alternate 2) at intersection of Minnesota Park Road at Range Road would be approximately \$1,537,000 without sidewalks and \$2,252,000 with sidewalks on both sides of Minnesota Park Road. The construction of roundabout (Alternate 1) at the intersection of Minnesota Park Road and Range Road is estimated at \$2,107,000 without sidewalks and \$3,161,000 with sidewalks on both sides of Minnesota Park Road. Widening Minnesota Park Road to include a Two Way Left Turn Lane (Alternates 3a and 3b), with estimations of \$2,448,000 and \$2,237,000 without sidewalks or \$2,779,000 and \$2,441,000 with sidewalks on both sides of Minnesota Park Road.

As Alternate 2 costs with sidewalks are similar to that of Alternate 1, the recommendation from the Project Management Committee is to combine Alternative 1 (Roundabout at Intersection) with Alternate 4b (Sidewalk on South side of roadway) which created Alternate 5. The probable cost of construction for Alternate 5 is estimated at \$2,639,000.

The Opinion of Probable Construction Costs includes a contingency for the proposed improvements listed above. These projects and their associated costs can be spread out over several fiscal year budgets as each can be constructed as a standalone project.

Appendix

Appendix A Traffic Analysis

VECTURA

STAGE O FEASIBILITY STUDY

MINNESOTA PARK ROAD TANGIPAHOA PARISH, LA

FOR RICHARD C. LAMBERT CONSULTANTS, LLC

BY VECTURA CONSULTING SERVICES, L.L.C.
PO BOX 14269, BATON ROUGE LA 70898

Contents

Executive Summary	
Introduction	1
Purpose	1
Methodology	1
Existing Conditions	2
Traffic Volumes	
Signal Warrant Analysis	6
Future Traffic Volumes	
Intersection Operations	
Capacity Analysis	
Queue and V/C Analysis	
Excess Capacity and Degree of Saturation	
Crash Analysis	
·	
Spot Speed Study	
Conclusions and Recommendations	
Appendix	23
List of Figures	
Figure 1: Vicinity Map	2
Figure 2: 2017 AM Turning Movement Counts	3
Figure 3: 2017 PM Turning Movement Counts	4
Figure 4: 2017 Average Daily Traffic	5
Figure 5: 2020 Implementation Year AM Turning Movement Counts	9
Figure 6: 2020 Implementation Year PM Turning Movement Counts	10
Figure 7: 2040 Design Year AM Turning Movement Counts	
Figure 8: 2040 Design Year PM Turning Movement Counts	12
Figure 9: Crash Data Locations	
Figure 10: Recommended Lane Configuration	22
List of Tables	
Table 1: 2017 Signal Warrant Analysis at Minnesota Park Road at Range Road	7
Table 2: 2040 Signal Warrant Analysis at Minnesota Park Road at Range Road	
Table 3: AM and PM Peak Period Level of Service and Delay Analysis for Existing Conditions (2017)	
Table 4: AM Peak Period Level of Service and Delay Analysis for Implementation Year (2020)	
Table 5: AM Peak Period Level of Service and Delay Analysis for Design Year (2040)	
Table 6: PM Peak Period Level of Service and Delay Analysis for Implementation Year (2020)	

Table 7: PM Peak Period Level of Service and Delay Analysis for Design Year (2040)	14
Table 8: AM Peak Period V/C and Queue Analysis for Implementation Year (2020)	15
Table 9: AM Peak Period V/C and Queue Analysis for Design Year (2040)	15
Table 10: PM Peak Period V/C and Queue Analysis for Implementation Year (2020)	16
Table 11: PM Peak Period V/C and Queue Analysis for Design Year (2040)	16
Table 12: Design Life Analysis	16
Table 13: Segment 1 Crash Analysis Summary (Minnesota Park Rd from Holly Street to S. Range Rd)	18
Table 14: Segment 2 Crash Analysis Summary (S. Range Road from Jade Court to Minnesota Park Rd).	18
Table 15: Segment 3 Crash Analysis Summary (S. Range Road from Minnesota Park Rd to Little Italy Rd	d) 18
Table 16: Intersection Crash Analysis Summary (Minnesota Park Road at S. Range Road)	19
Table 17: Crash Rate Summary	19
Table 18: Summary of Speed Study Data	20

Appendix

Appendix A: Raw Traffic Count Data

Appendix B: Vistro Output

Appendix C: Left and Right Turn Lane Warrants

Appendix D: Sidra Outputs
Appendix E: Crash Data
Appendix F: Spot Speed Study

Executive Summary

This report documents a capacity analysis and feasibility study for proposed improvements to the intersection of S. Range Road at Minnesota Park Road in the Hammond area which is located 0.5 miles to the east of US 51 (Business). A comparison between each alternative in terms of capacity and safety was analyzed and documented for the implementation year (2020) and design year (2040). The study intersection of Minnesota Park Road at S. Range Road was evaluated using existing and future traffic demands for the following concepts:

- Existing / No Build;
- Alternate 1: Traffic signal with an exclusive left-turn lane on the south and west approaches;
- Alternate 2: Two-Way Stop Control (TWSC) with an exclusive left-turn lane on the south approach;
- Alternate 3: TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and exclusive right and left-turn lanes on the west approach;
- Alternate 4: All-Way Stop Control (AWSC);
- Alternate 5: AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach;
- Alternate 6: Single-Lane Roundabout.

The study resulted in the following conclusions:

- 22 crashes were reported at the study intersection from January 1, 2013 to December 31, 2015.
- Four crashes as reported from 2013-2015 were correctable (four left-turn).
- The intersection of Minnesota Park Road at S. Range Road had abnormal crash rates when compared to the years 2012-2014 two lane rural road statewide average.
- 6 crashes were reported in three years on the segment of Minnesota Park Road between Holly Street and S. Range Road.
- 1 crash was reported in three years on the segment of S. Range Road between Jade Court and Minnesota Park Road.
- 2 crashes were reported in three years on the segment of S. Range Road between Minnesota Park Road and Little Italy Road.
- Traffic analyses indicated that the intersection of Minnesota Park Road at S. Range Road currently
 operates at a LOS B or better and will degrade to a LOS E in the AM and PM peak hours in the
 design year.
- Signal Warrant Analyses at the studied intersection using 2017 traffic volumes indicated that the
 intersection does not currently meet Warrant 1A or 1B. However, Warrant 1A is met in the year
 2040.
- Alternate 1 (traffic signal with added left-turn lanes on the south and west approaches) resulted in a LOS C of better on all approaches in the design year of 2040.
- Alternate 2 (TWSC with an exclusive left-turn lane on the south approach) did not proved a LOS D
 or better on all approaches in the implementation or design years.
- Alternate 3 (TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach and right and left-turn lanes on the west approach) provided a LOS D or

- better on all approaches in the implementation year, but did not provide a LOS D or better for all approaches in the design year.
- Alternate 4 (AWSC with existing geometry) did provide a LOS D or better for all approaches in the
 implementation year, but did not provide LOS D or better in the design year for all approaches in
 the design year.
- Alternate 5 (AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach) did provide a LOS D or better for all approaches in the implementation year, but did not provide LOS D or better in the design year for all approaches in the design year.
- Alternate 6 (single-lane roundabout) will operate at an overall LOS A or better with less overall delay compared to all alternatives analyzed during the implementation and design years.
- The Crash Modification Factor (CMF) of converting a signalized intersection to a roundabout is 0.52¹ for all crashes which means overall crashes should decrease by 48% after the installation of a roundabout. Four (4) of the 22 crashes as reported from 2013-2015 are correctable (left-turn).
- The intersection of Minnesota Park Road at S. Range Road had abnormal crash rates when compared to the years 2012-2014 two lane rural road statewide average.
- The highest number of correctable crashes in a twelve-month period was two left-turn crashes. According to LADOTD EDSM VI.1.1.5, a roundabout may be justified if five (5) or more correctable crashes are reported in a twelve-month period at the study intersection.

The study resulted in the following recommendations:

- For the design year, Alternate 1 & 6 will operate at a LOS C or better in the future. For the lowest stopped delay / queues and improved safety, a single-lane roundabout was recommended at the intersection of S. Range Road and Minnesota Park Road. The recommended lane configuration included the following approach lane configuration (as shown in **Figure 10**):
 - o Eastbound: One shared left-turn / right-turn lane,
 - o Northbound: One shared left-turn / through lane, and
 - o Southbound: One through lane / right-turn lane.
- The AWSC does operate at a LOS D or better on all approaches in the implementation year. Since
 the AWSC does not provide a LOS D or better in the design year, either Alternate 1 or 6 should be
 constructed before the design year.
- The installation of a roundabout provides increased safety due to reduction in the severity of angle crashes due to slower speeds and reduced conflicts. Additionally, the potential for many hazardous conflicts, such as right angle, left turn and head-on crashes are eliminated with the installation of a roundabout.
- It is recommended that all required signage and pavement markings for the roundabout should be designed in accordance with the LADOTD Road Design Manual Policy for Roundabout Design and the latest Manual on Uniform Traffic Control Devices (MUTCD)

Introduction

This report documents a preliminary capacity analysis and feasibility study for proposed improvements to the intersection of S. Range Road at Minnesota Park Road in the Hammond area. The studied intersection is located 0.5 miles to the east of US 51 (Business). The studied intersection location is shown in **Figure 1**.

Purpose

The purpose of this feasibility study is to assess and provide a comparative analysis of the operational performance of the existing traffic control of traffic controlled intersection with no turn lanes to an intersection that is traffic controlled with turn lanes on the south and west approaches as well as a modern roundabout. A comparison between each alternative in terms of capacity and safety was analyzed and documented for the implementation year of 2020 and the future design year of 2040.

Methodology

The analysis performed includes the following elements:

- Collected peak hour turning movement counts (AM and PM), 24-Hour machine counts and vehicular speeds,
- Determined volumes for future years of 2020 and 2040 using the growth rate obtained from the Regional Planning Commission (RPC),
- Determined the number of crashes per year at the intersection from the crash data provided by RPC.
- Performed signal warrant analysis for existing volumes at study intersection using the 2009 edition of the Manual on Uniform Traffic Control Devices (MUTCD),
- Determined the capacity and LOS of the proposed alternatives using SIDRA Version 7.0,
- Performed left- and right-turn lane warrants for the two-way stop-controlled alternate using criteria from National Cooperative Highway Research Program (NCHRP) Number 457, "Evaluating Intersection Improvement" and
- Developed conceptual roundabout layouts in accordance with LADOTD EDSM: VI.1.1.5 & LADOTD Road Design Manual Policy for Roundabout Design.

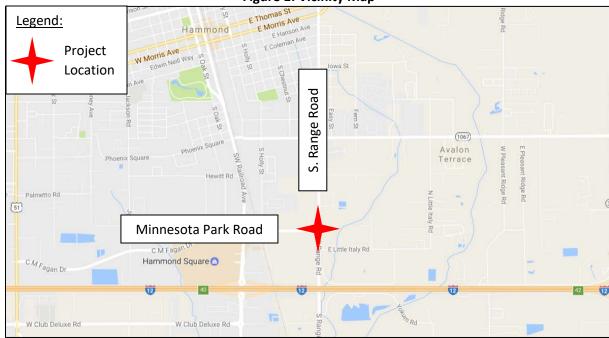
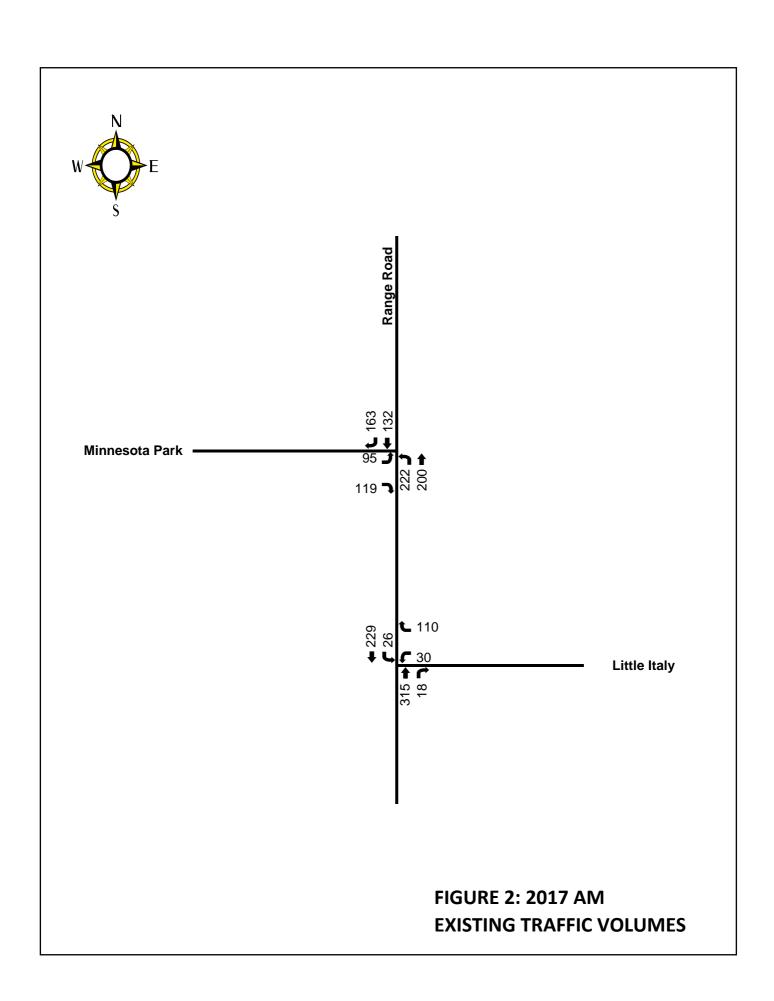
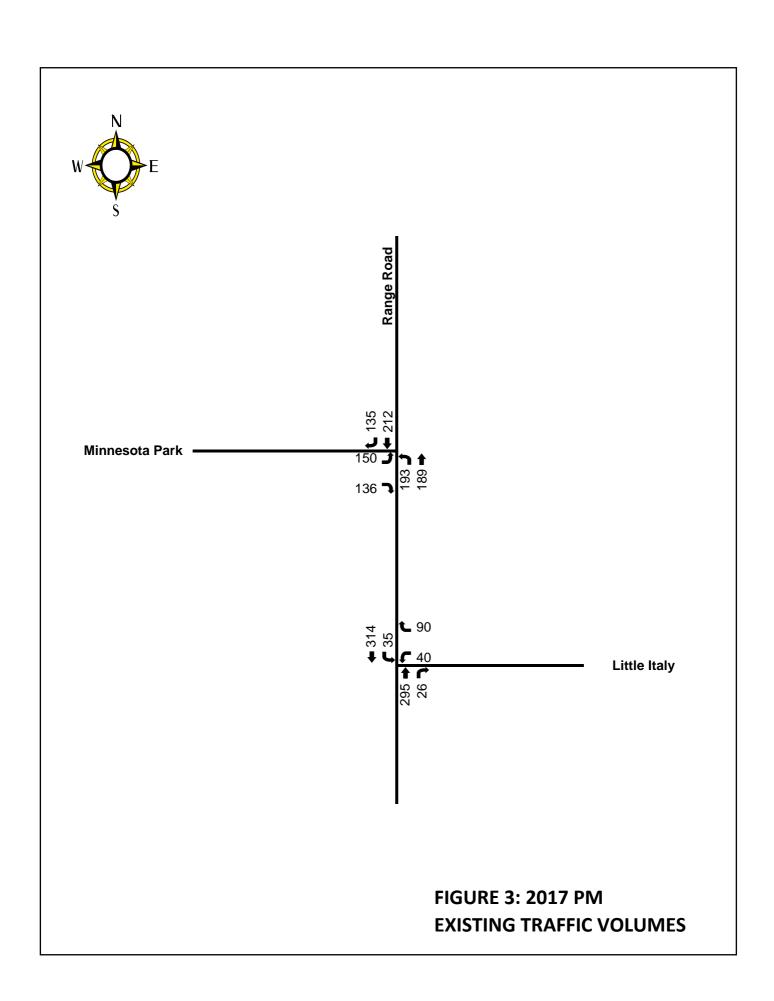


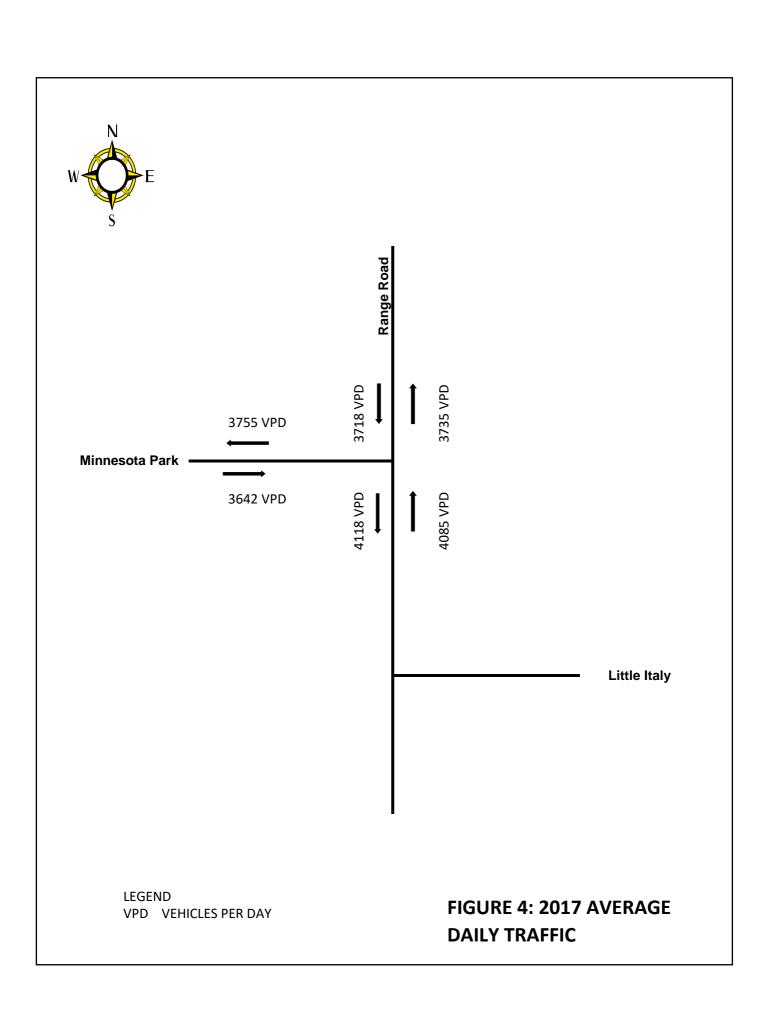
Figure 1: Vicinity Map

Existing Conditions

Minnesota Park Road is a two-lane roadway running east-west at the intersection with S. Range Road with a posted speed limit of 35 miles per hour (mph). S. Range Road is a two-lane roadway running north-south at the intersection with Minnesota Park Road. On S. Range Road, the posted speed limit is 35 mph on the south approach and 35 mph on the north approach.


The intersection of Minnesota Park Road and S. Range Road is a three-legged, traffic signal controlled intersection with the following lane configuration:


- Eastbound: One shared left- / right-turn lane,
- Northbound: One shared left-turn / through lane, and
- Southbound: One shared through / right-turn lane.


The traffic signal consisted of a protected / permitted phasing for the northbound left movement.

Traffic Volumes

Turning movement counts were performed at the intersection during the AM and PM peak periods on Wednesday, February 15, 2017 and are shown in Figures 2 & 3. In addition, 24-hour volumes were counted on the three approaches of the study intersection. 24-hour tube counts were performed for a seven day period starting on February 12, 2017. Raw counts including vehicle classifications are provided in the Appendix A. The average daily traffic (ADT) is calculated as an average of the 24-hour volumes on Tuesday, Wednesday and Thursday as shown in Figure 4. E. Little Italy Road was counted at the request of DOTD; however, no analyses was performed for this intersection.

Signal Warrant Analysis

The existing approach volumes collected at the study intersection were used to perform a traffic signal warrant analysis at the study intersection using procedures detailed in the 2009 Manual on Uniform Traffic Control Devices (MUTCD).

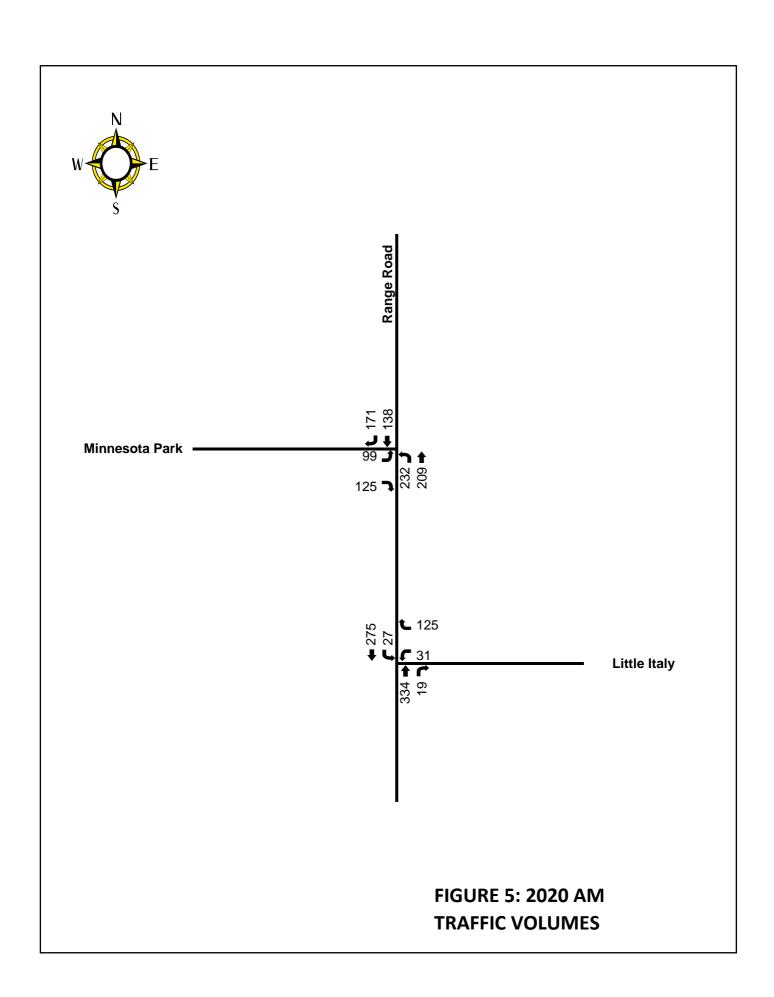
A signal warrant analysis using Warrant 1 of the MUTCD (using 100 percent warrant satisfying volumes) was performed for the 2017 existing and 2040 design life conditions are summarized in **Tables 1 & 2**. Range Road was considered the major street and Minnesota Park Avenue was considered the minor street. To meet Warrant 1, any eight hours out of a 24-hour period must exceed the minimum volumes as shown below. Per MUTCD Warrant 1 (Eight-Hour Vehicular Volume) the need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any eight (8) hours of an average day:

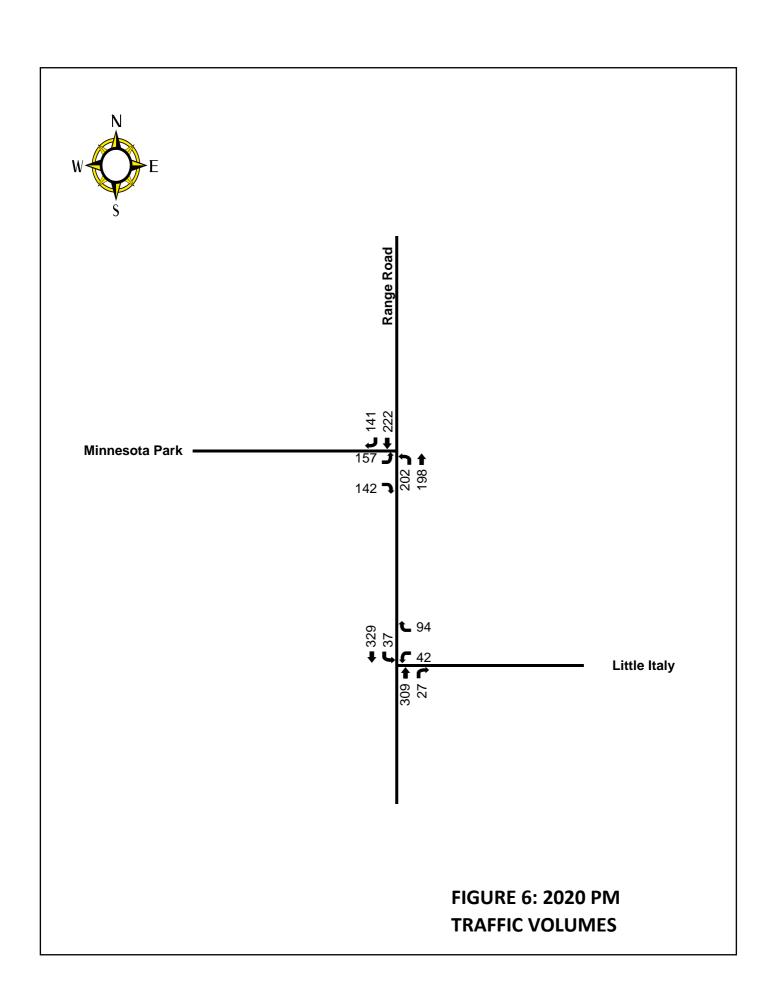
- A. The vehicles per hour on the major-street exceed 500, and the higher-volume minor-street approaches exceed 150; or
- B. The vehicles per hour on the major-street exceed 750, and the higher-volume minor-street approaches exceed 75.

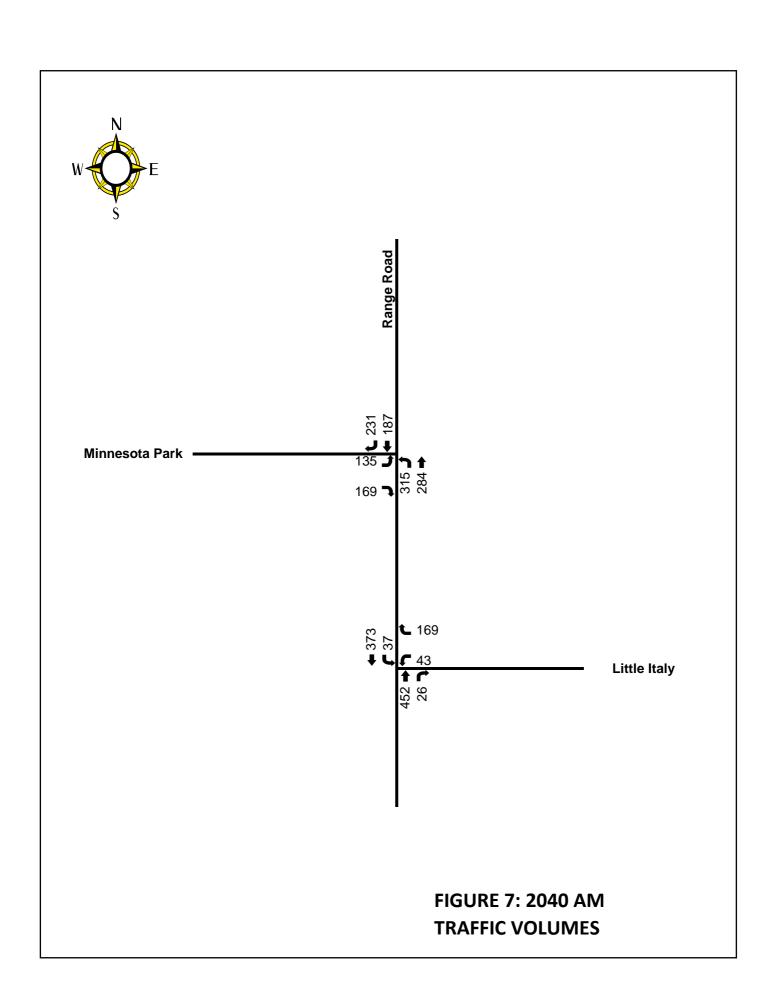
Table 1: 2017 Signal Warrant Analysis at Minnesota Park Road at Range Road

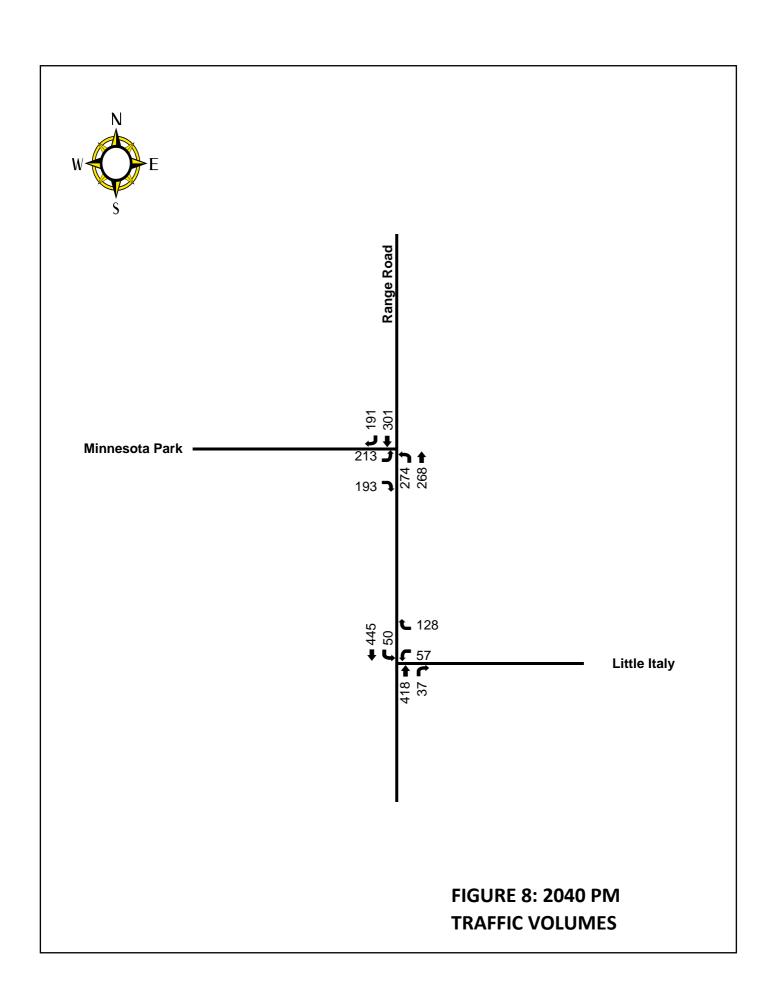
Time of	ام منام ما	Exis	ting	Crite	ria 1A	Crite	ria 1B	Criteri	a Met?
Time i	Period	Major St	Minor St	Major St	Minor St	Major St	Minor St	1A	1B
12:00 AM	1:00 AM	35	25	500	150	750	75	NO	NO
1:00 AM	2:00 AM	29	13	500	150	750	75	NO	NO
2:00 AM	3:00 AM	31	11	500	150	750	75	NO	NO
3:00 AM	4:00 AM	22	7	500	150	750	75	NO	NO
4:00 AM	5:00 AM	103	15	500	150	750	75	NO	NO
5:00 AM	6:00 AM	157	28	500	150	750	75	NO	NO
6:00 AM	7:00 AM	287	69	500	150	750	75	NO	NO
7:00 AM	8:00 AM	618	181	500	150	750	75	YES	NO
8:00 AM	9:00 AM	585	162	500	150	750	75	YES	NO
9:00 AM	10:00 AM	378	123	500	150	750	75	NO	NO
10:00 AM	11:00 AM	346	156	500	150	750	75	NO	NO
11:00 AM	12:00 PM	433	195	500	150	750	75	NO	NO
12:00 PM	1:00 PM	444	264	500	150	750	75	NO	NO
1:00 PM	2:00 PM	447	213	500	150	750	75	NO	NO
2:00 PM	3:00 PM	508	264	500	150	750	75	YES	NO
3:00 PM	4:00 PM	665	290	500	150	750	75	YES	NO
4:00 PM	5:00 PM	620	290	500	150	750	75	YES	NO
5:00 PM	6:00 PM	564	299	500	150	750	75	YES	NO
6:00 PM	7:00 PM	462	314	500	150	750	75	NO	NO
7:00 PM	8:00 PM	259	208	500	150	750	75	NO	NO
8:00 PM	9:00 PM	277	150	500	150	750	75	NO	NO
9:00 PM	10:00 PM	166	124	500	150	750	75	NO	NO
10:00 PM	11:00 PM	104	89	500	150	750	75	NO	NO
11:00 PM	12:00 AM	62	39	500	150	750	75	NO	NO

From the above table, it can be said that the study intersection does not warrant a signal for the implementation year of 2017 based on either Criteria 1A or Criteria 1B since neither criterion was met for eight (8) hours of the average day.


Table 2: 2040 Signal Warrant Analysis at Minnesota Park Road at Range Road


Time o	Daviad	Exis	ting	Crite	ria 1A	Crite	ia 1B	Criteria	a Met?
Time I	Period	Major St	Minor St	Major St	Minor St	Major St	Minor St	1A	1B
12:00 AM	1:00 AM	50	35	500	150	750	75	NO	NO
1:00 AM	2:00 AM	41	18	500	150	750	75	NO	NO
2:00 AM	3:00 AM	44	16	500	150	750	75	NO	NO
3:00 AM	4:00 AM	31	10	500	150	750	75	NO	NO
4:00 AM	5:00 AM	146	21	500	150	750	75	NO	NO
5:00 AM	6:00 AM	223	40	500	150	750	75	NO	NO
6:00 AM	7:00 AM	407	98	500	150	750	75	NO	NO
7:00 AM	8:00 AM	876	257	500	150	750	75	YES	YES
8:00 AM	9:00 AM	830	230	500	150	750	75	YES	YES
9:00 AM	10:00 AM	536	174	500	150	750	75	YES	NO
10:00 AM	11:00 AM	491	221	500	150	750	75	NO	NO
11:00 AM	12:00 PM	614	277	500	150	750	75	YES	NO
12:00 PM	1:00 PM	630	374	500	150	750	75	YES	NO
1:00 PM	2:00 PM	634	302	500	150	750	75	YES	NO
2:00 PM	3:00 PM	720	374	500	150	750	75	YES	NO
3:00 PM	4:00 PM	943	411	500	150	750	75	YES	YES
4:00 PM	5:00 PM	879	411	500	150	750	75	YES	YES
5:00 PM	6:00 PM	800	424	500	150	750	75	YES	YES
6:00 PM	7:00 PM	655	445	500	150	750	75	YES	NO
7:00 PM	8:00 PM	367	295	500	150	750	75	NO	NO
8:00 PM	9:00 PM	393	213	500	150	750	75	NO	NO
9:00 PM	10:00 PM	235	176	500	150	750	75	NO	NO
10:00 PM	11:00 PM	147	126	500	150	750	75	NO	NO
11:00 PM	12:00 AM	88	55	500	150	750	75	NO	NO


From the above table, it can be said that the study intersection does warrant a signal for the design year of 2040 based on Criteria 1A. Criteria 1A was met for 11 hours of the average day which exceeds the eight (8) hour minimum requirement.


Future Traffic Volumes

The future annual growth rate was obtained from the RPC to estimate forecast volumes at the study intersection. This growth rate of 1.53% was applied to the existing traffic volumes, and 2020 and 2040 turning movement volumes were developed for average weekday AM and PM peak hours. The design years of 2020 and 2040, AM and PM peak hour volumes are shown in **Figures 5-8**.

Intersection Operations

Using existing peak hour turning movement volumes, the intersection of Minnesota Park Road at S. Range Road was analyzed for the existing (2017), implementation (2020) and design years (2040) during the AM and PM peak periods for the following scenarios:

- Existing / No Build;
- Alternate 1: Traffic signal with an exclusive left-turn lane on the south approach and exclusive right and left-turn lanes on the west approach;
- Alternate 2: Two-Way Stop Control (TWSC) with an exclusive left-turn lane on the south approach;
- Alternate 3: TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach;
- Alternate 4: All-Way Stop Control (AWSC);
- Alternate 5: AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach;
- Alternate 6: Single-Lane Roundabout.

When developing alternates for comparison, the existing geometry was tested with different traffic control devices to ascertain if only the traffic control could be changed. If the existing geometry under the different traffic control devices could not provide a LOS D or better turn lanes were added under a separate alternate. To minimize cost and impacts to right-of-way, geometric improvements were truncated when a LOS D or better for each approach was reached in the design year of 2040. Based on the results below, a southbound right turn lane was not needed to achieve a LOS D or better for all approaches for Alternate 1. However, an exclusive left-turn lane was recommended for the south and west approaches. Traffic signal timings were developed in Vistro and then input Sidra. The northbound left movement for all scenarios consisted of a protected / permitted phasing. See **Appendix B** for phasing and cycle lengths.

When considering the minimum geometric requirements for the TWSC, left- and right-turn lane warrants were performed on S. Range Road using criteria from National Cooperative Highway Research Program (NCHRP) Number 457, "Evaluating Intersection Improvement". Based on this analysis, a left-turn lane located on the south approach was warranted with the 2017 volumes; however, a right-turn lane was not warranted in either the existing (2017) or design years (2040). The NCHRP turn lane warrant analyses can be found in **Appendix C**. Alternate 3 tested the maximum amount of turn lanes possible with a TWSC. Since Alternates 4 and 5 consist of AWSC traffic control, the turn lane warrants do not apply.

Capacity Analysis

An annual growth rate developed from the New Orleans Regional Planning Commission Travel Demand Model was applied to existing traffic movements to determine the design life of the study intersection using Sidra software (version 7). The Sidra capacity analysis results are shown in **Tables 3 - 7**. Detailed Sidra results for each scenario are shown in **Appendix D**.

Table 3: AM and PM Peak Period Level of Service and Delay Analysis for Existing Conditions (2017)

Approach	А	М	Р	М
Ap	Delay	LOS	Delay	LOS
S	12.1	В	12.2	В
N	11.2	В	9.7	Α
W	14.8	В	15.9	В
ALL	12.4	В	12.4	В

Table 4: AM Peak Period Level of Service and Delay Analysis for Implementation Year (2020)

	Approach	No E Sig	Build mal	Al Build Si NBL, E	-	Build	t 2 TWSC NBL	Build T	t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
20	1	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
20	S	14.2	В	6.9	Α	3.0	N/A	2.9	N/A	12.7	В	14.6	В	1.7	Α
	Ν	11.0	В	10.6	В	0.0	N/A	0.0	N/A	18.5	С	19.6	С	3.1	Α
	W	15.8	В	9.7	Α	26.5	D	20.2	С	29.4	D	18.9	С	1.6	Α
	ALL	13.6	В	8.7	Α	7.5	N/A	6.0	N/A	18.4	С	17.2	С	2.1	Α

Table 5: AM Peak Period Level of Service and Delay Analysis for Design Year (2040)

	Approach	_	Build mal	Alt Build Si NBL, El	-	Build	t 2 TWSC NBL	Build T	t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
40	1	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
20	S	65.1	Е	10.7	В	4.5	N/A	4.2	N/A	21.1	С	23.3	С	5.4	Α
	Ν	89.4	F	24.0	С	0.0	N/A	0.0	N/A	33.5	D	31.6	D	9.5	Α
	W	25.5	С	10.4	В	216.2	F	100.0	F	58.6	F	27.0	D	2.5	Α
	ALL	63.7	E	14.8	В	51.8	N/A	24.9	N/A	33.6	D	26.8	D	6.0	Α

Table 6: PM Peak Period Level of Service and Delay Analysis for Implementation Year (2020)

	Approach	No E Sig	Build mal	Al Build Si NBL, E	-	Build	t 2 TWSC NBL	Build T	t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
20	1	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
20	S	14.8	В	7.2	Α	2.6	N/A	2.5	N/A	13.5	В	15.1	С	2.0	Α
	Ν	12.0	В	10.6	В	0.0	N/A	0.0	N/A	26.3	D	27.7	D	2.4	Α
	W	17.3	В	10.6	В	35.7	E	22.5	С	28.4	D	19.0	С	2.4	Α
	ALL	14.5	В	9.3	Α	11.0	N/A	7.3	N/A	22.1	С	20.5	С	2.2	Α

Table 7: PM Peak Period Level of Service and Delay Analysis for Design Year (2040)

	Approach	_	Build mal	Al Build Si NBL, E	-	Build	t 2 TWSC NBL		t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
6	1	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
20	S	71.8	E	9.0	Α	3.7	N/A	3.5	N/A	20.9	С	22.8	С	2.9	Α
	Ν	42.4	D	25.1	С	0.0	N/A	0.0	N/A	64.5	F	56.9	F	3.9	Α
	W	62.5	Е	13.3	В	318.0	F	129.0	F	63.2	F	28.6	D	3.2	Α
	ALL	59.1	Е	15.7	В	91.0	N/A	37.7	N/A	47.7	E	36.1	E	3.3	Α

The traffic analyses indicated that the intersection of S. Range Avenue at Minnesota Park Road currently operates at a LOS B. As volumes grow over time, the current geometric configuration will operate at a LOS F and E in the AM and PM peak hours, respectively, in the design year of 2040. Based on the Sidra analyses, the following was determined:

- Alternate 1 (traffic signal with added left-turn lanes on the south and west approaches) resulted in a LOS C of better on all approaches in the design year of 2040.
- Alternate 2 (TWSC with an exclusive left-turn lane on the south approach) did not proved a LOS D or better on all approaches in the implementation or design years.
- Alternate 3 (TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach) did provide a LOS D or better on all approaches in the implementation year, but did not provide a LOS D or better in the design year.
- Alternate 4 (AWSC with existing geometry) did provide a LOS D or better for all approaches in the implementation year, but did not provide LOS D or better in the design year for all approaches in the design year.
- Alternate 5 (AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach) did provide a LOS D or better for all approaches in the implementation year, but did not provide LOS D or better in the design year for all approaches in the design year.
- Alternate 6 (single-lane roundabout) is forecasted to operate at an overall LOS A or better with less overall delay compared to all alternatives analyzed during the implementation year (2020) and design year (2040).

Queue and V/C Analysis

The 95th percentile queue lengths for each approach of the proposed alternates were determined using SIDRA. A summary of the 95th percentile queue lengths for each approach at the study intersection are shown in **Tables 8 - 11**.

Table 8: AM Peak Period V/C and Queue Analysis for Implementation Year (2020)

	Approach		Build mal	Build Si	t 1 gnal w/ BR, EBL	Build			t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
2020	1	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue
"	S	0.78	305	0.48	119	0.26	29	0.25	29	0.59	80	0.54	69	0.55	125
	Ν	0.59	203	0.58	202	0.22	0	0.13	0	0.62	91	0.56	75	0.46	85
	W	0.60	173	0.29	82	0.63	135	0.48	62	0.68	110	0.48	58	0.29	51

Table 9: AM Peak Period V/C and Queue Analysis for Design Year (2040)

0	Approach		Build gnal	Build Si	t 1 ignal w/ BR, EBL	Build	t 2 TWSC NBL	Build T	t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	lt 5 WSC w/ s, EBL, SBR	Bu	t 6 iild dabout
2040	1	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue
``	S	1.07	842	0.73	198	0.41	61	0.36	59	0.80	181	0.73	132	0.78	310
	Ν	1.11	671	0.83	401	0.30	0	0.18	0	0.85	209	0.76	143	0.72	226
	W	0.81	283	0.40	116	1.35	1085	1.21	411	0.92	260	0.65	98	0.44	86

Table 10: PM Peak Period V/C and Queue Analysis for Implementation Year (2020)

	Approach	-	Build mal	Al Build Si NBL, E	-		t 2 TWSC NBL	Build T	t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
2020	1	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue
1"	S	0.72	207	0.46	89	0.20	22	0.20	22	0.56	72	0.52	64	0.47	93
	Ν	0.57	217	0.55	206	0.22	0	0.13	0	0.74	134	0.72	123	0.45	84
	W	0.68	203	0.38	109	0.76	201	0.58	88	0.72	123	0.50	61	0.38	66

Table 11: PM Peak Period V/C and Queue Analysis for Design Year (2040)

	Approach	-	Build mal	Build Si	t 1 gnal w/ BR, EBL	Build			t 3 WSC w/ , EBL, SBR	Build	t 4 AWSC Geom.	Build A	t 5 WSC w/ , EBL, SBR	Bu	t 6 ild labout
2040	1	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue	V/C	Queue
1,,	S	1.08	667	0.62	136	0.32	40	0.31	38	0.76	149	0.70	117	0.61	149
	Ν	0.94	545	0.83	445	0.30	0	0.17	0	1.00	389	0.98	296	0.59	143
	W	1.00	505	0.56	176	1.60	1588	1.33	652	0.97	322	0.68	107	0.51	102

The roundabout provided the best v/c ratio in the design year (2040). The results of the queue analysis were somewhat mixed. Alternates 1, 5 and 6 provided the lowest queue lengths. The analysis can be found in **Appendix D.**

Excess Capacity and Degree of Saturation

To provide a comparative analysis of the design life of each alternate, the Demand & Sensitivity setting in Sidra was set to Design Life analysis option with a Design Life Analysis Objective of v/c ratio = 1 per the DOTD Roundabout Analysis: LA DOTD required settings and standards for Sidra Intersection 6.1. It should be noted that the analyses identifies the year in which the entire intersection reaches a v/c ratio = 1, while certain movements may have a LOS F at an earlier time than the design life. The results of the design life can be found in **Table 12**.

Table 12: Design Life Analysis

	Design Life*	•
	AM	PM
No Build	15	15
Alt. 1	35	39
Alt. 2	15	11
Alt. 3	19	16
Alt. 4	28	23
Alt. 5	40	24
Alt. 6	35	40

^{*} Measured from the year 2017

Crash Analysis

The historic crash data summary was obtained from RPC within a mile of the study area for all reported crashes between January 1, 2013 and December 31, 2015. The crash data were plotted based on latitude and longitude and categorized as a road segment or intersection location within the study area and are shown in **Figure 9**.

A total of 31 crashes were reported in the study area in the three year period. The three year crash data summaries for the three road segments and intersection are shown in **Tables 13** thru **16**, respectively. As shown in **Table 16**, the majority of crashes over the three year study period are rear-end collisions at the intersection of Minnesota Park Road at S. Range Road. According to the DOTD EDSM VI.1.1.5 Roundabout, correctable crashes are identified as head on, right angle and left turn. As such, four (4) of the 22 crashes as reported from 2013-2015 are correctable (four left-turn).

Crash rates were calculated and compared to state averages. State rates were obtained from the *DOTD Guidelines for Conducting a Crash Data Analysis using the Number-Rate Method and Overrepresented Determination January 2016.* Crash rates were calculated to identify any abnormal locations and are shown in **Table 17**. An abnormal location is defined as a location having at least an average of five crashes per year and twice the statewide average crash rate for its functional classification. The intersection of Minnesota Park Road at S. Range Road had abnormal crash rates when compared to the years 2012-2014 two lane rural road statewide average. Detailed crash data can be found in **Appendix E**.

Figure 9: Crash Data Locations

Table 13: Segment 1 Crash Analysis Summary (Minnesota Park Rd from Holly Street to S. Range Rd)

Crash Types	2013	2014	2015	Total
Non-Collision w/ Motor Vehicle	0	0	0	0
Rear End	0	0	4	4
Head-On	0	0	0	0
Right Angle	0	0	0	0
Left Turn	0	0	0	0
Right Turn	0	0	0	0
Sideswipe Same Direction	0	1	0	1
Sideswipe Opposite Direction	0	0	0	0
Other	0	0	1	1
Total	0	1	5	6

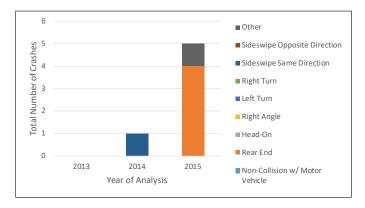


Table 14: Segment 2 Crash Analysis Summary (S. Range Road from Jade Court to Minnesota Park Rd)

Crash Types	2013	2014	2015	Total
Non-Collision w/ Motor Vehicle	1	0	0	1
Rear End	0	0	0	0
Head-On	0	0	0	0
Right Angle	0	0	0	0
Left Turn	0	0	0	0
Right Turn	0	0	0	0
Sideswipe Same Direction	0	0	0	0
Sideswipe Opposite Direction	0	0	0	0
Other	0	0	0	0
Total	1	0	0	1

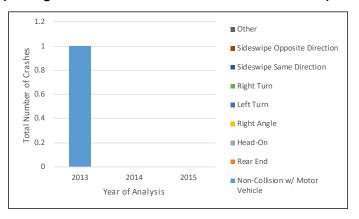


Table 15: Segment 3 Crash Analysis Summary (S. Range Road from Minnesota Park Rd to Little Italy Rd)

Crash Types	2013	2014	2015	Total
Non-Collision w/ Motor Vehicle	0	0	0	0
Rear End	1	0	0	1
Head-On	0	0	0	0
Right Angle	0	0	0	0
Left Turn	1	0	0	1
Right Turn	0	0	0	0
Sideswipe Same Direction	0	0	0	0
Sideswipe Opposite Direction	0	0	0	0
Other	0	0	0	0
Total	2	0	0	2

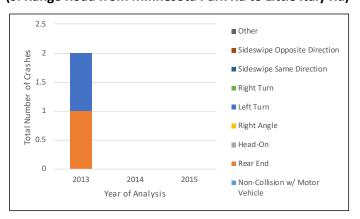
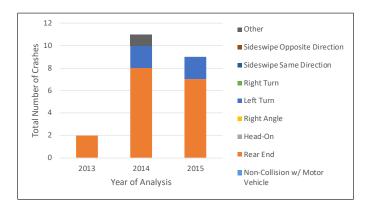



Table 16: Intersection Crash Analysis Summary (Minnesota Park Road at S. Range Road)

Crash Types	2013	2014	2015	Total
Non-Collision w/ Motor Vehicle	0	0	0	0
Rear End	2	8	7	17
Head-On	0	0	0	0
Right Angle	0	0	0	0
Left Turn	0	2	2	4
Right Turn	0	0	0	0
Sideswipe Same Direction	0	0	0	0
Sideswipe Opposite Direction	0	0	0	0
Other	0	1	0	1
Total	2	11	9	22

Table 17: Crash Rate Summary

				Crash F	requency		Crash R	ate	
	Years			Crash	es/Year		Crashes	/MV	
Intersection	2013 - 2015	ADT	Number of Crashes	Existing	Statewide Average	Existing	2012-2014 Statewide Average for Rural 2 Lane	State Avg x 2	Abnormal
Minnesota Park Road at S. Range Road	3	11,445	22	7.33		1.76	0.76	1.52	Yes
	Years			Crash Frequency Crashes / Mile/Year				Crash Rate Crashes /MVM	
Segment	2013 - 2015	ADT	Number of Crashes	Existing	Statewide Average	Existing	2012-2014 Statewide Average for Rural 2 Lane	State Avg x 2	Abnormal
Segment 1: Minnesota Park Road (Holly Street to S. Range Road) Miles = 0.38	3	7,397	6	5.28	0.75	1.96	0.99	1.98	No
Segment 2: S. Range Road (Jade Court to Minnesota Park Road) Miles = 0.16	3	7,453	1	2.07	0.75	0.76	0.99	1.98	No
Segment 3: S. Range Road (Minnesota Park Road to Little Italy Road) Miles = 0.12	3	8,203	2	5.42	0.75	1.81	0.99	1.98	No

Note: Crash data for years 2013-2015 and Statewide averages for years 2012-2014 $\,$

Spot Speed Study

A spot speed study was performed to determine the speed distribution of traffic stream at the study intersection. The data collected in the spot speed study was used to determine vehicle speed characteristics (such as average speed, mode, 85th percentile speed, and 10-mph pace) under current traffic and environmental conditions. The summary of the spot speed study is shown in **Table 18**. The raw data obtained can be found in **Appendix F**.

Table 18: Summary of Speed Study Data

Location	Direction	Mean	Mode	85%	10 Mile Pace	Posted Speed
Minnesota Park	EB	33	31	36	29-38	35
C Dance Dand	NB	39	41	44	35-44	35
S. Range Road	SB	35	38	40	31-40	35

Conclusions and Recommendations

The intersection of Minnesota Park Road at S. Range Road was evaluated using existing and future traffic demands for the following proposed concepts:

- Existing / No Build;
- Alternate 1: Traffic signal with an exclusive left-turn lane on the south and west approaches;
- Alternate 2: Two-Way Stop Control (TWSC) with an exclusive left-turn lane on the south approach;
- Alternate 3: TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach;
- Alternate 4: All-Way Stop Control (AWSC);
- Alternate 5: AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach;
- Alternate 6: Single-Lane Roundabout.

This study resulted in the following conclusions:

- 22 crashes were reported at the study intersection from January 1, 2013 to December 31, 2015.
- Four crashes as reported from 2013-2015 were correctable (four left-turn).
- The intersection of Minnesota Park Road at S. Range Road had abnormal crash rates when compared to the years 2012-2014 two lane rural road statewide average.
- 6 crashes were reported in three years on the segment of Minnesota Park Road between Holly Street and S. Range Road.
- 1 crash was reported in three years on the segment of S. Range Road between Jade Court and Minnesota Park Road.
- 2 crashes were reported in three years on the segment of S. Range Road between Minnesota Park Road and Little Italy Road.
- Traffic analyses indicated that the intersection of Minnesota Park Road at S. Range Road currently
 operates at a LOS B or better and will degrade to a LOS E in the AM and PM peak hours,
 respectively, in the design year.
- Signal Warrant Analysis at the studied intersection using 2017 traffic volumes indicated that the intersection does not meet either Warrant 1A or Warrant 1B. However, Warrant 1A is met in the year 2040.
- Alternate 1 (traffic signal with added left-turn lanes on the south and west approaches) resulted in a LOS C of better on all approaches in the design year of 2040.
- Alternate 2 (TWSC with an exclusive left-turn lane on the south approach) did not proved a LOS D or better on all approaches in the implementation or design years.

- Alternate 3 (TWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane
 on the north approach, and right and left-turn lanes on the west approach) did provide a LOS D
 or better on all approaches in the implementation year, but did not provide a LOS D or better in
 the design year.
- Alternate 4 (AWSC with existing geometry) did provide a LOS D or better for all approaches in the implementation year, but did not provide LOS D or better in the design year for all approaches in the design year.
- Alternate 5 (AWSC with an exclusive left-turn lane on the south approach, exclusive right turn lane on the north approach, and right and left-turn lanes on the west approach) did provide a LOS D or better for all approaches in the implementation year, but did not provide LOS D or better in the design year for all approaches in the design year.
- Alternate 6 (single-lane roundabout) is forecasted to operate at an overall LOS A or better with less overall delay compared to all alternatives analyzed during the implementation year (2020) and design year (2040).
- The Crash Modification Factor (CMF) of converting a signalized intersection to a roundabout is 0.52² for all crashes which means overall crashes should decrease by 48% after the installation of a roundabout. Four (4) of the 22 crashes as reported from 2013-2015 are correctable (left-turn).
- The intersection of Minnesota Park Road at S. Range Road had abnormal crash rates when compared to the years 2012-2014 two lane rural road statewide average.
- The highest number of correctable crashes in a twelve-month period was two left-turn crashes. According to LADOTD EDSM VI.1.1.5, a roundabout may be justified if five (5) or more correctable crashes are reported in a twelve-month period at the study intersection.

The study resulted in the following recommendations:

- For the design year, a roundabout or the traffic signal with left-turn lanes will operate at a LOS C or better in the future. For the lowest stopped delay / queues and improved safety, a single-lane roundabout was recommended at the intersection of S. Range Road and Minnesota Park Road. The recommended lane configuration included the following approach lane configuration (as shown in Figure 10):
 - o Eastbound: One shared left-turn / right-turn lane,
 - o Northbound: One shared left-turn / through lane, and
 - o Southbound: One through lane / right-turn lane.
- The AWSC does operate at a LOS D or better on all approaches in the implementation year. Since the AWSC does not provide a LOS D or better in the design year, either Alternate 1 or 6 should be constructed before the design year.
- Neither of the TWSC control alternates provided a LOS D or better on all approaches in the implementation year and should not be considered as an interim solution.
- The installation of a roundabout provides increased safety due to reduction in the severity of angle crashes due to slower speeds and reduced conflicts. Additionally, the potential for many

² http://www.cmfclearinghouse.org/detail.cfm?facid=225 Minnesota Park Road Improvements Stage 0 Traffic Study

- hazardous conflicts, such as right angle, left turn and head-on crashes are eliminated with the installation of a roundabout.
- It is recommended that all required signage and pavement markings for the roundabout should be designed in accordance with the LADOTD Road Design Manual Policy for Roundabout Design and the latest Manual on Uniform Traffic Control Devices (MUTCD).
- The recommended lane configuration, as shown in Figure 10, is based on the geometric parameters as prescribed in the Roundabout Analysis: LA DOTD required settings and standards for Sidra Intersection 6.1. As such, the recommended lane configuration is conceptual; therefore, turning templates should be checked in AutoTURN (or some other approved turning template software) for the design vehicle once the final alignment is confirmed.

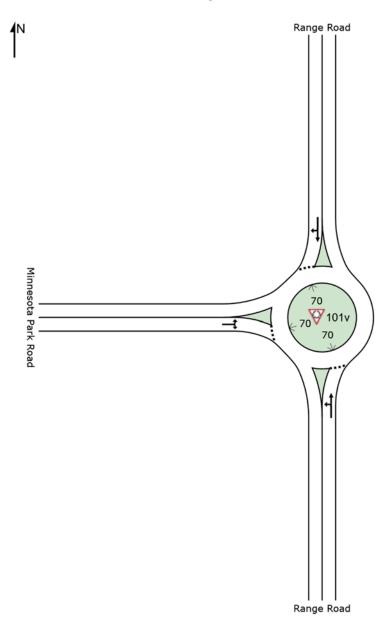


Figure 10: Recommended Lane Configuration

Appendix

Appendix A: Raw Traffic Count Data

Daily Total Classes Report

Study Date: Sunday, 02/12/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	61	8	0	0	0	0	0	0	0	0	0	0	69
01:00 - 01:59	0	43	9	0	0	0	0	0	0	0	0	0	0	52
02:00 - 02:59	0	41	5	0	2	0	0	0	0	0	0	0	0	48
03:00 - 03:59	0	19	2	0	0	0	0	0	0	0	0	0	0	21
04:00 - 04:59	0	17	4	0	0	0	0	0	0	0	0	0	0	21
05:00 - 05:59	0	29	6	0	2	0	0	0	0	0	0	0	0	37
06:00 - 06:59	1	68	8	0	2	0	0	0	0	0	0	0	0	79
07:00 - 07:59	2	85	16	0	1	0	0	0	0	0	0	0	0	104
08:00 - 08:59	2	118	27	0	1	0	0	0	0	0	0	0	0	148
09:00 - 09:59	2	232	30	0	11	0	0	0	0	0	0	0	0	275
10:00 - 10:59	2	299	68	0	9	1	0	0	0	0	0	0	0	379
11:00 - 11:59	1	352	61	0	7	0	0	0	0	0	0	0	0	421
12:00 - 12:59	6	416	67	0	12	0	0	0	0	0	0	0	0	501
13:00 - 13:59	2	321	71	0	3	0	0	0	0	0	0	0	0	397
14:00 - 14:59	3	351	45	0	12	0	0	0	0	0	0	0	0	411
15:00 - 15:59	1	324	56	1	7	0	0	0	0	0	0	0	0	389
16:00 - 16:59	3	307	58	0	5	0	0	0	0	0	0	0	0	373
17:00 - 17:59	3	323	39	0	6	0	0	0	0	0	0	0	0	371
18:00 - 18:59	2	301	42	0	9	0	0	0	0	0	0	0	0	354
19:00 - 19:59	3	219	47	0	4	0	0	0	0	0	0	0	0	273
20:00 - 20:59	2	192	25	0	4	0	0	0	0	0	0	0	0	223
21:00 - 21:59	1	122	18	0	0	0	0	0	0	0	0	0	0	141
22:00 - 22:59	0	124	12	0	1	0	0	0	0	0	0	0	0	137
23:00 - 23:59	0	64	2	0	1	0	0	0	0	0	0	0	0	67
Totals	36	4428	726	1	99	1	0	0	0	0	0	0	0	5291
Percent of Total	0.7	83.7	13.7	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of AM	0.6	82.5	14.8	0.0	2.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.7	84.2	13.3	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 101 % Trucks: 1.9 AM % Trucks: 2.2 PM % Trucks: 1.8

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Monday, 02/13/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	30	1	0	0	0	0	0	0	0	0	0	0	31
01:00 - 01:59	0	23	2	0	0	0	0	0	0	0	0	0	0	25
02:00 - 02:59	0	16	2	0	0	0	0	0	0	0	0	0	0	18
03:00 - 03:59	0	24	6	0	1	0	0	0	0	0	0	0	0	31
04:00 - 04:59	0	42	18	0	2	2	0	0	0	0	0	0	0	64
05:00 - 05:59	1	83	26	0	5	2	0	0	0	0	0	0	0	117
06:00 - 06:59	0	169	33	0	12	1	0	0	0	0	0	0	0	215
07:00 - 07:59	1	416	65	1	14	0	0	2	1	0	0	1	0	501
08:00 - 08:59	1	454	57	0	18	0	0	1	0	0	0	0	0	531
09:00 - 09:59	0	301	53	1	13	1	0	1	0	0	0	0	0	370
10:00 - 10:59	1	302	65	0	7	1	0	0	2	0	0	0	0	378
11:00 - 11:59	6	337	65	0	12	3	0	1	0	0	0	0	0	424
12:00 - 12:59	4	403	91	0	18	3	0	0	4	0	0	0	0	523
13:00 - 13:59	5	391	83	0	7	2	0	0	4	0	0	0	0	492
14:00 - 14:59	1	410	74	0	13	2	0	1	3	0	0	0	0	504
15:00 - 15:59	5	511	83	6	24	6	1	0	3	0	0	0	1	640
16:00 - 16:59	10	479	70	3	14	3	0	1	5	0	0	1	2	588
17:00 - 17:59	14	392	51	2	8	8	4	2	2	0	0	2	4	489
18:00 - 18:59	5	397	60	1	18	1	0	0	0	0	0	0	0	482
19:00 - 19:59	2	323	41	1	6	1	0	0	0	0	0	0	0	374
20:00 - 20:59	1	227	28	0	2	0	0	0	0	0	0	0	0	258
21:00 - 21:59	0	164	25	0	4	0	0	0	1	0	0	0	0	194
22:00 - 22:59	0	127	6	0	2	0	0	0	0	0	0	0	0	135
23:00 - 23:59	0	58	9	0	0	0	0	0	0	0	0	0	0	67
Totals	57	6079	1014	15	200	36	5	9	25	0	0	4	7	7451
Percent of Total	8.0	81.6	13.6	0.2	2.7	0.5	0.1	0.1	0.3	0.0	0.0	0.1	0.1	100
Percent of AM	0.4	81.2	14.5	0.1	3.1	0.4	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	1.0	81.8	13.1	0.3	2.4	0.5	0.1	0.1	0.5	0.0	0.0	0.1	0.1	100

Truck Summary:

Total Trucks: 301 % Trucks: 4.0 AM % Trucks: 3.9 PM % Trucks: 4.1

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Tuesday, 02/14/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

[#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	27	3	0	0	0	0	0	0	0	0	0	0	30
01:00 - 01:59	0	25	2	0	0	0	0	0	0	0	0	0	0	27
02:00 - 02:59	0	13	3	0	0	0	0	0	0	0	0	0	0	16
03:00 - 03:59	0	19	5	0	0	0	0	0	0	0	0	0	0	24
04:00 - 04:59	0	49	21	0	3	0	0	0	0	0	0	0	0	73
05:00 - 05:59	0	91	26	0	5	0	0	0	1	0	0	0	0	123
06:00 - 06:59	2	194	40	0	7	0	0	0	0	0	0	0	0	243
07:00 - 07:59	2	485	64	1	12	1	0	2	1	0	0	0	0	568
08:00 - 08:59	0	441	65	1	18	3	0	0	4	1	0	0	0	533
09:00 - 09:59	1	334	50	3	17	0	0	0	4	0	0	0	0	409
10:00 - 10:59	2	317	57	0	9	2	0	1	6	0	0	0	0	394
11:00 - 11:59	4	370	46	0	16	0	0	0	5	0	0	0	0	441
12:00 - 12:59	4	430	64	0	6	0	0	0	3	0	0	0	0	507
13:00 - 13:59	2	412	75	0	12	0	0	0	4	0	0	0	0	505
14:00 - 14:59	0	468	81	1	12	3	0	1	3	0	0	0	0	569
15:00 - 15:59	10	493	76	2	14	1	0	1	2	0	1	1	0	601
16:00 - 16:59	5	493	79	3	13	4	0	0	2	0	0	0	2	601
17:00 - 17:59	8	398	64	1	11	13	3	2	1	0	0	1	1	503
18:00 - 18:59	1	381	65	0	8	2	0	0	0	0	0	0	0	457
19:00 - 19:59	0	321	44	0	8	0	0	0	0	0	0	0	0	373
20:00 - 20:59	0	202	34	0	4	0	0	0	0	0	0	0	0	240
21:00 - 21:59	0	147	26	0	1	0	0	0	0	0	0	0	0	174
22:00 - 22:59	1	124	9	0	1	0	0	0	0	0	0	0	0	135
23:00 - 23:59	0	82	9	0	1	0	0	0	0	0	0	0	0	92
Totals	42	6316	1008	12	178	29	3	7	36	1	1	2	3	7638
Percent of Total	0.5	82.7	13.2	0.2	2.3	0.4	0.0	0.1	0.5	0.0	0.0	0.0	0.0	100
Percent of AM	0.4	82.1	13.3	0.2	3.0	0.2	0.0	0.1	0.7	0.0	0.0	0.0	0.0	100
Percent of PM	0.7	83.1	13.2	0.1	1.9	0.5	0.1	0.1	0.3	0.0	0.0	0.0	0.1	100
Truck Summary								•	•	•	•			

Truck Summary:

Total Trucks: 272 % Trucks: 3.6 AM % Trucks: 4.3 PM % Trucks: 3.1

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Wednesday, 02/15/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	40	4	0	0	0	0	0	0	0	0	0	0	44
01:00 - 01:59	0	20	1	0	0	0	0	0	0	0	0	0	0	21
02:00 - 02:59	0	19	3	0	0	0	0	0	0	0	0	0	0	22
03:00 - 03:59	0	15	3	0	0	0	0	0	0	0	0	0	0	18
04:00 - 04:59	0	45	19	1	2	0	0	1	0	0	0	0	0	68
05:00 - 05:59	2	91	23	0	6	0	0	0	0	0	0	0	0	122
06:00 - 06:59	0	188	38	1	5	1	0	0	0	0	0	0	0	233
07:00 - 07:59	4	454	60	2	13	0	0	0	0	0	0	0	0	533
08:00 - 08:59	2	427	61	1	13	0	0	0	0	0	0	0	0	504
09:00 - 09:59	0	262	57	1	8	0	0	0	0	0	0	0	0	328
10:00 - 10:59	1	272	45	1	9	0	0	0	0	0	0	0	0	328
11:00 - 11:59	0	348	57	0	10	1	0	0	1	0	0	0	0	417
12:00 - 12:59	2	394	86	0	21	0	0	1	0	0	0	0	0	504
13:00 - 13:59	1	351	65	1	9	0	0	1	0	0	0	0	0	428
14:00 - 14:59	3	400	63	1	20	1	0	0	0	0	0	0	0	488
15:00 - 15:59	5	483	59	2	21	2	1	2	0	0	0	0	0	575
16:00 - 16:59	0	479	75	1	11	1	0	2	0	0	0	1	1	571
17:00 - 17:59	2	425	86	1	15	1	0	2	0	0	0	0	0	532
18:00 - 18:59	3	427	77	0	9	1	0	0	0	0	0	0	0	517
19:00 - 19:59	2	275	48	0	3	0	0	1	0	0	0	0	0	329
20:00 - 20:59	3	236	35	0	3	0	0	0	0	0	0	0	0	277
21:00 - 21:59	0	185	15	0	2	0	0	0	0	0	0	0	0	202
22:00 - 22:59	1	121	10	0	0	0	0	0	0	0	0	0	0	132
23:00 - 23:59	0	54	5	0	2	0	0	0	0	0	0	0	0	61
Totals	31	6011	995	13	182	8	1	10	1	0	0	1	1	7254
Percent of Total	0.4	82.9	13.7	0.2	2.5	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	82.7	14.1	0.3	2.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.5	83.0	13.5	0.1	2.5	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	100
Truck Summary														

Truck Summary:

Total Trucks: 217 % Trucks: 3.0 AM % Trucks: 2.9 PM % Trucks: 3.0

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Thursday, 02/16/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

[#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	24	5	0	0	0	0	0	0	0	0	0	0	29
01:00 - 01:59	0	22	2	0	0	0	0	0	0	0	0	0	0	24
02:00 - 02:59	0	23	1	0	0	0	0	0	0	0	0	0	0	24
03:00 - 03:59	0	12	4	0	0	0	0	0	0	0	0	0	0	16
04:00 - 04:59	1	40	14	0	1	0	0	0	0	0	0	0	0	56
05:00 - 05:59	0	82	20	0	6	2	0	0	0	0	0	0	0	110
06:00 - 06:59	2	187	29	1	10	1	0	0	0	0	0	0	0	230
07:00 - 07:59	2	451	68	1	5	2	0	0	1	0	0	0	0	530
08:00 - 08:59	2	450	86	2	11	0	1	0	0	0	0	0	0	552
09:00 - 09:59	2	296	54	0	2	1	0	1	0	0	0	0	0	356
10:00 - 10:59	3	295	56	0	9	1	0	0	0	0	0	0	0	364
11:00 - 11:59	2	343	64	0	7	1	0	0	0	0	0	0	0	417
12:00 - 12:59	2	370	81	0	7	0	1	0	0	0	0	0	0	461
13:00 - 13:59	1	345	61	1	11	0	1	0	0	0	0	0	0	420
14:00 - 14:59	0	436	76	0	12	1	0	0	0	0	0	0	0	525
15:00 - 15:59	3	504	71	3	16	1	1	0	0	0	0	0	0	599
16:00 - 16:59	2	451	71	2	14	4	1	2	2	0	0	0	0	549
17:00 - 17:59	6	463	87	0	13	5	0	0	1	0	0	0	0	575
18:00 - 18:59	3	376	59	0	7	0	0	0	0	0	0	0	0	445
19:00 - 19:59	3	295	44	0	2	0	0	1	0	0	0	0	0	345
20:00 - 20:59	1	213	30	0	1	0	0	0	0	0	0	0	0	245
21:00 - 21:59	0	168	29	0	1	0	0	0	0	0	0	0	0	198
22:00 - 22:59	0	115	15	0	1	0	0	0	0	0	0	0	0	131
23:00 - 23:59	0	81	12	0	5	0	0	0	0	0	0	0	0	98
Totals	35	6042	1039	10	141	19	5	4	4	0	0	0	0	7299
Percent of Total	0.5	82.8	14.2	0.1	1.9	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.5	82.2	14.9	0.1	1.9	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.5	83.1	13.9	0.1	2.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 183 % Trucks: 2.5 AM % Trucks: 2.4 PM % Trucks: 2.5

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Friday, 02/17/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

[#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	40	0	0	0	0	0	0	0	0	0	0	0	40
01:00 - 01:59	0	36	3	0	0	0	0	0	0	0	0	0	0	39
02:00 - 02:59	0	30	2	0	0	0	0	0	0	0	0	0	0	32
03:00 - 03:59	0	20	5	0	1	0	0	0	0	0	0	0	0	26
04:00 - 04:59	0	45	22	1	1	0	0	0	0	0	0	0	0	69
05:00 - 05:59	0	71	18	1	6	0	0	0	0	0	0	0	0	96
06:00 - 06:59	1	186	46	1	10	0	0	0	1	0	0	0	0	245
07:00 - 07:59	0	413	65	1	4	0	0	1	0	0	0	0	0	484
08:00 - 08:59	3	461	79	0	17	0	0	0	0	0	0	0	0	560
09:00 - 09:59	1	332	69	0	11	0	0	0	0	0	0	0	0	413
10:00 - 10:59	3	320	62	0	9	1	0	1	0	0	0	0	0	396
11:00 - 11:59	2	380	81	0	12	0	0	1	1	0	0	0	0	477
12:00 - 12:59	1	422	73	0	11	2	0	0	0	0	0	0	0	509
13:00 - 13:59	4	407	64	1	13	0	0	0	1	0	0	0	0	490
14:00 - 14:59	1	424	76	0	12	0	0	1	0	0	0	0	0	514
15:00 - 15:59	2	436	75	3	12	2	1	1	0	0	1	1	1	535
16:00 - 16:59	3	500	84	1	14	2	2	0	1	0	0	1	1	609
17:00 - 17:59	6	482	82	2	19	3	1	3	0	0	0	0	0	598
18:00 - 18:59	4	405	67	0	9	0	0	1	0	0	0	0	0	486
19:00 - 19:59	0	295	61	1	7	1	0	0	1	0	0	0	0	366
20:00 - 20:59	1	264	41	0	9	0	0	1	0	0	0	0	0	316
21:00 - 21:59	0	223	37	0	5	0	0	0	0	0	0	0	0	265
22:00 - 22:59	0	146	22	0	1	0	0	0	0	0	0	0	0	169
23:00 - 23:59	0	89	14	0	3	0	0	0	0	0	0	0	0	106
Totals	32	6427	1148	12	186	11	4	10	5	0	1	2	2	7840
Percent of Total	0.4	82.0	14.6	0.2	2.4	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	81.1	15.7	0.1	2.5	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.4	82.5	14.0	0.2	2.3	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 233 % Trucks: 3.0 AM % Trucks: 2.8 PM % Trucks: 3.1

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Saturday, 02/18/2017

Unit ID: 16010764

Location: Minnisota Park (west approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	55	7	0	3	0	0	0	0	0	0	0	0	65
01:00 - 01:59	0	31	11	0	0	0	0	0	0	0	0	0	0	42
02:00 - 02:59	0	33	1	0	1	0	0	0	0	0	0	0	0	35
03:00 - 03:59	0	26	2	0	0	0	0	0	0	0	0	0	0	28
04:00 - 04:59	0	30	8	0	1	0	0	0	0	0	0	0	0	39
05:00 - 05:59	0	43	10	0	0	0	0	0	0	0	0	0	0	53
06:00 - 06:59	0	78	12	0	2	0	0	0	0	0	0	0	0	92
07:00 - 07:59	1	122	32	0	2	0	0	0	0	0	0	0	0	157
08:00 - 08:59	0	205	39	1	5	0	0	0	0	0	0	0	0	250
09:00 - 09:59	2	262	60	0	6	1	0	0	0	0	0	0	0	331
10:00 - 10:59	0	343	58	0	9	0	0	0	0	0	0	0	0	410
11:00 - 11:59	4	365	75	0	7	1	1	0	0	0	0	0	0	453
12:00 - 12:59	3	399	78	0	7	0	0	0	0	0	0	0	0	487
13:00 - 13:59	4	391	68	0	14	0	0	1	0	0	0	0	0	478
14:00 - 14:59	5	352	66	0	5	0	0	0	0	0	0	0	0	428
15:00 - 15:59	2	350	68	0	6	0	0	0	0	0	0	0	0	426
16:00 - 16:59	2	363	72	0	7	1	0	0	0	0	0	0	0	445
17:00 - 17:59	1	374	58	0	14	0	0	0	0	0	0	0	0	447
18:00 - 18:59	3	345	58	0	7	0	0	0	0	0	0	0	0	413
19:00 - 19:59	1	275	31	0	4	0	0	0	0	0	0	0	0	311
20:00 - 20:59	2	227	32	0	2	0	0	0	0	0	0	0	0	263
21:00 - 21:59	0	192	33	0	0	0	0	0	0	0	0	0	0	225
22:00 - 22:59	0	152	19	0	0	0	0	0	0	0	0	0	0	171
23:00 - 23:59	0	111	4	0	1	0	0	0	0	0	0	0	0	116
Totals	30	5124	902	1	103	3	1	1	0	0	0	0	0	6165
Percent of Total	0.5	83.1	14.6	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of AM	0.4	81.5	16.1	0.1	1.8	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.5	83.9	13.9	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 109 % Trucks: 1.8 AM % Trucks: 2.0 PM % Trucks: 1.6

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Sunday, 02/12/2017

Unit ID: 16040568

Location: Range (north approach)

[#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	70	8	0	2	0	0	1	2	0	0	0	0	83
01:00 - 01:59	0	56	16	1	1	0	0	0	1	0	0	0	0	75
02:00 - 02:59	0	60	11	0	5	0	0	0	0	0	0	0	0	76
03:00 - 03:59	0	29	8	0	0	0	0	0	0	0	0	0	0	37
04:00 - 04:59	0	27	5	0	1	0	0	0	1	0	0	0	0	34
05:00 - 05:59	0	35	5	0	3	0	0	0	0	0	0	0	0	43
06:00 - 06:59	0	57	14	0	1	0	0	0	0	0	0	0	0	72
07:00 - 07:59	0	74	20	0	1	1	0	0	0	0	0	0	0	96
08:00 - 08:59	1	126	31	0	5	0	0	0	1	0	0	0	0	164
09:00 - 09:59	0	227	45	0	7	1	0	0	0	0	0	0	0	280
10:00 - 10:59	2	273	62	0	7	0	0	0	1	0	0	0	0	345
11:00 - 11:59	2	282	63	0	8	1	0	0	0	0	0	0	0	356
12:00 - 12:59	2	361	68	0	16	0	1	0	0	0	0	0	0	448
13:00 - 13:59	2	308	75	0	14	0	0	0	0	0	0	0	0	399
14:00 - 14:59	3	318	67	0	8	0	0	0	0	0	0	0	0	396
15:00 - 15:59	2	322	56	0	7	1	0	0	0	0	0	0	0	388
16:00 - 16:59	2	306	51	0	8	0	1	0	0	0	0	0	0	368
17:00 - 17:59	5	326	59	0	7	0	0	0	0	0	0	0	0	397
18:00 - 18:59	5	286	52	0	10	0	0	0	0	0	0	0	0	353
19:00 - 19:59	2	205	25	0	3	0	0	1	0	0	0	0	0	236
20:00 - 20:59	0	181	28	0	5	0	0	0	0	0	0	0	0	214
21:00 - 21:59	0	143	30	0	2	0	0	0	0	0	0	0	0	175
22:00 - 22:59	0	136	10	0	7	0	0	0	0	0	0	0	0	153
23:00 - 23:59	0	74	5	0	0	0	0	0	0	0	0	0	0	79
Totals	28	4282	814	1	128	4	2	2	6	0	0	0	0	5267
Percent of Total	0.5	81.3	15.5	0.0	2.4	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	79.2	17.3	0.1	2.5	0.2	0.0	0.1	0.4	0.0	0.0	0.0	0.0	100
Percent of PM	0.6	82.3	14.6	0.0	2.4	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 143 % Trucks: 2.7 AM % Trucks: 3.1 PM % Trucks: 2.5

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Monday, 02/13/2017

Unit ID: 16040568

Location: Range (north approach)

Г	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	37	4	0	0	1	0	0	0	0	0	0	0	42
01:00 - 01:59	0	31	7	0	0	1	0	0	0	0	0	0	0	39
02:00 - 02:59	0	30	1	0	0	0	0	0	0	0	0	0	0	31
03:00 - 03:59	0	24	7	0	2	1	0	0	0	0	0	0	0	34
04:00 - 04:59	0	36	27	0	0	1	0	0	0	0	0	0	0	64
05:00 - 05:59	1	83	34	1	4	0	0	0	0	1	0	0	0	124
06:00 - 06:59	0	190	44	5	12	0	0	0	0	0	0	0	0	251
07:00 - 07:59	1	398	80	3	16	0	0	0	2	0	0	0	0	500
08:00 - 08:59	1	389	68	1	20	5	0	0	0	0	0	0	1	485
09:00 - 09:59	2	291	68	1	15	0	0	0	1	0	0	0	0	378
10:00 - 10:59	3	285	71	1	11	3	0	1	4	0	0	0	0	379
11:00 - 11:59	0	327	66	0	23	2	0	1	0	0	0	0	0	419
12:00 - 12:59	1	366	80	0	27	1	0	1	4	0	0	0	0	480
13:00 - 13:59	4	355	100	1	23	3	0	1	1	0	0	0	0	488
14:00 - 14:59	2	421	92	7	26	2	0	2	2	0	0	0	0	554
15:00 - 15:59	5	506	86	3	31	2	2	2	0	0	0	0	0	637
16:00 - 16:59	3	473	93	4	21	3	0	0	0	0	0	0	0	597
17:00 - 17:59	1	487	96	1	19	1	0	1	1	0	0	0	0	607
18:00 - 18:59	2	355	76	1	17	0	0	0	0	0	0	0	0	451
19:00 - 19:59	0	286	45	0	6	2	0	0	0	0	0	0	0	339
20:00 - 20:59	0	193	27	0	4	0	0	0	0	0	0	0	0	224
21:00 - 21:59	0	143	25	0	4	0	0	0	1	0	0	0	0	173
22:00 - 22:59	0	131	16	0	2	0	0	0	0	0	0	0	0	149
23:00 - 23:59	0	50	11	0	2	1	0	0	0	0	0	0	0	64
Totals	26	5887	1224	29	285	29	2	9	16	1	0	0	1	7509
Percent of Total	0.3	78.4	16.3	0.4	3.8	0.4	0.0	0.1	0.2	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	77.2	17.4	0.4	3.8	0.5	0.0	0.1	0.3	0.0	0.0	0.0	0.0	100
Percent of PM	0.4	79.1	15.7	0.4	3.8	0.3	0.0	0.1	0.2	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 372 % Trucks: 5.0 AM % Trucks: 5.1 PM % Trucks: 4.9

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Tuesday, 02/14/2017

Unit ID: 16040568

Location: Range (north approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	35	5	0	0	0	0	0	0	0	0	0	0	40
01:00 - 01:59	0	26	3	0	1	0	0	0	0	0	0	0	0	30
02:00 - 02:59	0	25	4	0	0	0	0	1	0	0	0	0	0	30
03:00 - 03:59	0	25	11	0	0	0	0	0	1	0	0	0	0	37
04:00 - 04:59	0	64	23	0	2	0	0	0	1	0	0	0	0	90
05:00 - 05:59	0	85	33	1	7	1	0	1	0	0	0	0	0	128
06:00 - 06:59	0	194	41	6	9	0	0	0	3	0	0	0	0	253
07:00 - 07:59	6	418	93	5	23	1	1	2	3	0	0	0	0	552
08:00 - 08:59	2	414	65	0	19	2	0	1	2	1	0	0	0	506
09:00 - 09:59	0	293	79	1	14	0	0	1	3	0	0	0	0	391
10:00 - 10:59	3	297	78	0	18	3	0	0	2	0	0	0	0	401
11:00 - 11:59	4	320	69	0	26	1	0	1	2	0	0	0	0	423
12:00 - 12:59	2	363	104	0	16	2	0	1	1	0	0	1	1	491
13:00 - 13:59	4	372	105	1	17	5	0	2	3	0	0	0	0	509
14:00 - 14:59	3	475	102	3	20	2	0	1	3	0	0	0	0	609
15:00 - 15:59	5	513	99	11	26	3	1	3	2	0	0	0	0	663
16:00 - 16:59	0	510	125	3	26	3	0	3	1	0	0	0	0	671
17:00 - 17:59	2	488	129	1	14	3	0	1	0	0	0	0	0	638
18:00 - 18:59	0	348	73	1	17	0	0	1	0	0	0	0	0	440
19:00 - 19:59	0	308	54	1	6	0	0	0	0	0	0	0	0	369
20:00 - 20:59	0	182	32	0	5	0	0	0	1	0	0	0	0	220
21:00 - 21:59	1	131	33	0	3	1	0	0	0	0	0	0	0	169
22:00 - 22:59	0	115	13	0	1	0	0	0	0	0	0	0	0	129
23:00 - 23:59	0	63	8	0	0	0	0	0	0	0	0	0	0	71
Totals	32	6064	1381	34	270	27	2	19	28	1	0	1	1	7860
Percent of Total	0.4	77.2	17.6	0.4	3.4	0.3	0.0	0.2	0.4	0.0	0.0	0.0	0.0	100
Percent of AM	0.5	76.2	17.5	0.5	4.1	0.3	0.0	0.2	0.6	0.0	0.0	0.0	0.0	100
Percent of PM	0.3	77.7	17.6	0.4	3.0	0.4	0.0	0.2	0.2	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 383 % Trucks: 4.9 AM % Trucks: 5.8 PM % Trucks: 4.4

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Wednesday, 02/15/2017

Unit ID: 16040568

Location: Range (north approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	38	6	0	0	0	0	0	0	0	0	0	0	44
01:00 - 01:59	0	32	3	0	0	0	0	0	0	0	0	0	0	35
02:00 - 02:59	0	26	5	0	1	0	0	0	1	0	0	0	0	33
03:00 - 03:59	0	18	5	0	0	0	0	0	0	0	0	0	0	23
04:00 - 04:59	0	55	21	0	4	0	0	0	1	0	0	0	0	81
05:00 - 05:59	0	82	27	2	5	0	0	1	0	0	0	0	0	117
06:00 - 06:59	1	180	46	4	7	0	1	0	0	0	0	0	0	239
07:00 - 07:59	4	392	71	5	19	3	0	1	3	0	0	0	0	498
08:00 - 08:59	3	375	74	2	15	1	1	1	2	0	0	0	0	474
09:00 - 09:59	1	250	65	1	8	3	0	0	0	0	0	0	0	328
10:00 - 10:59	3	241	58	0	11	4	0	2	2	0	0	0	0	321
11:00 - 11:59	0	337	65	1	20	3	0	1	1	0	0	0	0	428
12:00 - 12:59	1	320	89	1	34	2	0	2	0	0	0	0	0	449
13:00 - 13:59	2	332	77	2	14	4	0	1	0	0	0	0	0	432
14:00 - 14:59	2	401	87	5	18	1	0	2	1	0	0	0	0	517
15:00 - 15:59	1	500	94	6	21	1	1	0	0	0	1	0	0	625
16:00 - 16:59	2	493	99	0	14	1	0	1	0	0	0	0	0	610
17:00 - 17:59	3	438	91	1	19	1	0	1	1	0	0	0	0	555
18:00 - 18:59	2	368	83	3	21	0	0	0	0	0	0	0	0	477
19:00 - 19:59	2	223	46	0	12	0	0	0	0	0	0	0	0	283
20:00 - 20:59	0	207	45	0	8	0	0	0	0	0	0	0	0	260
21:00 - 21:59	0	171	19	2	2	0	0	0	0	0	0	0	0	194
22:00 - 22:59	0	116	11	0	2	0	0	0	0	0	0	0	0	129
23:00 - 23:59	0	53	8	0	1	0	0	0	0	0	0	0	0	62
Totals	27	5648	1195	35	256	24	3	13	12	0	1	0	0	7214
Percent of Total	0.4	78.3	16.6	0.5	3.5	0.3	0.0	0.2	0.2	0.0	0.0	0.0	0.0	100
Percent of AM	0.5	77.3	17.0	0.6	3.4	0.5	0.1	0.2	0.4	0.0	0.0	0.0	0.0	100
Percent of PM	0.3	78.9	16.3	0.4	3.6	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 344 % Trucks: 4.8 AM % Trucks: 5.2 PM % Trucks: 4.5

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Thursday, 02/16/2017

Unit ID: 16040568

Location: Range (north approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	25	4	0	1	0	0	0	0	0	0	0	0	30
01:00 - 01:59	0	20	6	0	0	0	0	0	0	0	0	0	0	26
02:00 - 02:59	0	27	1	0	0	0	0	1	0	0	0	0	0	29
03:00 - 03:59	0	18	6	0	0	0	0	0	0	0	0	0	0	24
04:00 - 04:59	0	47	19	1	3	0	0	1	0	0	0	0	0	71
05:00 - 05:59	0	80	22	1	8	0	0	0	0	0	0	0	0	111
06:00 - 06:59	0	167	35	4	11	0	0	0	0	0	0	0	0	217
07:00 - 07:59	2	431	77	7	13	2	1	2	1	0	0	0	0	536
08:00 - 08:59	2	404	89	2	18	0	0	0	1	0	0	0	0	516
09:00 - 09:59	1	236	75	1	17	0	0	0	0	0	0	0	0	330
10:00 - 10:59	4	249	65	0	15	2	1	2	0	0	0	0	0	338
11:00 - 11:59	0	319	74	1	24	1	0	1	1	0	0	0	0	421
12:00 - 12:59	0	351	91	2	13	0	0	1	1	0	0	0	0	459
13:00 - 13:59	1	301	79	0	13	2	0	4	3	0	0	0	0	403
14:00 - 14:59	1	404	79	3	30	3	0	1	1	1	0	0	0	523
15:00 - 15:59	4	493	98	4	23	2	2	0	0	0	0	0	0	626
16:00 - 16:59	3	488	106	1	18	3	0	1	0	0	0	0	0	620
17:00 - 17:59	4	482	98	1	23	2	0	0	1	0	0	0	0	611
18:00 - 18:59	0	357	98	0	9	0	0	0	1	0	0	0	0	465
19:00 - 19:59	0	257	51	0	4	0	0	0	0	0	0	0	0	312
20:00 - 20:59	1	216	31	0	5	0	0	0	0	0	0	0	0	253
21:00 - 21:59	0	151	27	0	1	0	0	1	0	0	0	0	0	180
22:00 - 22:59	1	133	15	0	1	0	0	0	0	0	0	0	0	150
23:00 - 23:59	0	70	13	0	2	0	0	1	0	0	0	0	0	86
Totals	24	5726	1259	28	252	17	4	16	10	1	0	0	0	7337
Percent of Total	0.3	78.0	17.2	0.4	3.4	0.2	0.1	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	76.4	17.9	0.6	4.2	0.2	0.1	0.3	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.3	79.0	16.8	0.2	3.0	0.3	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 328 % Trucks: 4.5 AM % Trucks: 5.4 PM % Trucks: 3.9

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Friday, 02/17/2017

Unit ID: 16040568

Location: Range (north approach)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	42	6	0	1	0	0	0	0	0	0	0	0	49
01:00 - 01:59	0	43	6	0	1	0	0	1	0	0	0	0	0	51
02:00 - 02:59	0	36	7	0	0	0	0	0	0	0	0	0	0	43
03:00 - 03:59	0	18	5	0	1	0	0	0	0	0	0	0	0	24
04:00 - 04:59	0	40	7	0	4	0	0	1	0	0	0	0	0	52
05:00 - 05:59	0	75	23	2	3	0	0	0	0	0	0	0	0	103
06:00 - 06:59	0	163	47	5	11	0	0	0	0	0	0	0	0	226
07:00 - 07:59	0	371	76	4	13	2	0	2	2	0	0	0	0	470
08:00 - 08:59	0	380	96	1	12	2	0	0	1	0	0	0	0	492
09:00 - 09:59	1	292	90	2	21	0	0	0	0	0	0	0	0	406
10:00 - 10:59	0	281	70	2	16	1	0	1	0	0	0	0	0	371
11:00 - 11:59	1	349	78	1	16	1	0	1	1	0	0	0	0	448
12:00 - 12:59	4	346	92	4	15	5	0	0	1	0	0	0	0	467
13:00 - 13:59	3	394	81	4	14	1	0	3	1	0	0	0	0	501
14:00 - 14:59	0	428	87	5	21	0	0	2	0	0	0	0	0	543
15:00 - 15:59	5	505	106	4	33	0	0	2	1	0	0	0	0	656
16:00 - 16:59	3	525	102	1	20	3	0	1	0	0	0	1	0	656
17:00 - 17:59	2	468	111	1	19	0	0	1	0	0	0	0	0	602
18:00 - 18:59	0	382	91	2	7	2	0	1	0	0	0	0	0	485
19:00 - 19:59	0	300	74	1	8	0	0	1	0	0	0	0	0	384
20:00 - 20:59	0	241	48	1	9	1	0	0	0	0	0	0	0	300
21:00 - 21:59	1	191	38	0	6	0	0	0	0	0	0	0	0	236
22:00 - 22:59	0	145	21	0	3	0	0	0	0	0	0	0	0	169
23:00 - 23:59	0	109	17	0	3	0	0	0	0	0	0	0	0	129
Totals	20	6124	1379	40	257	18	0	17	7	0	0	1	0	7863
Percent of Total	0.3	77.9	17.5	0.5	3.3	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.1	76.4	18.7	0.6	3.6	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.4	78.7	16.9	0.4	3.1	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 340 % Trucks: 4.3 AM % Trucks: 4.8 PM % Trucks: 4.1

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Saturday, 02/18/2017

Unit ID: 16040568

Location: Range (north approach)

Г	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	63	7	0	2	0	0	0	0	0	0	0	0	72
01:00 - 01:59	0	41	10	0	0	0	0	0	0	0	0	0	0	51
02:00 - 02:59	0	39	8	0	1	0	0	0	0	0	0	0	0	48
03:00 - 03:59	0	26	5	0	2	0	0	0	0	0	0	0	0	33
04:00 - 04:59	0	26	4	0	0	0	0	0	0	0	0	0	0	30
05:00 - 05:59	0	51	14	1	1	0	0	0	0	0	0	0	0	67
06:00 - 06:59	0	69	15	0	4	0	0	0	0	0	0	0	0	88
07:00 - 07:59	0	120	40	0	2	0	0	0	0	0	0	0	0	162
08:00 - 08:59	0	180	48	0	9	0	0	0	0	0	0	0	0	237
09:00 - 09:59	1	242	58	0	8	0	0	0	0	0	0	0	0	309
10:00 - 10:59	0	329	73	0	20	0	0	0	0	0	0	0	0	422
11:00 - 11:59	2	359	82	1	21	1	1	0	0	0	0	0	0	467
12:00 - 12:59	5	354	78	1	14	0	0	0	0	0	0	0	0	452
13:00 - 13:59	2	377	50	1	19	0	0	1	0	0	0	0	0	450
14:00 - 14:59	3	354	84	0	18	0	0	0	0	0	0	0	0	459
15:00 - 15:59	3	355	59	0	9	0	0	1	0	0	0	0	0	427
16:00 - 16:59	0	315	73	1	15	0	0	0	0	0	0	0	0	404
17:00 - 17:59	8	342	63	1	8	0	0	0	0	0	0	0	0	422
18:00 - 18:59	1	313	63	0	9	1	0	1	0	0	0	0	0	388
19:00 - 19:59	2	252	35	0	6	0	0	0	0	0	0	0	0	295
20:00 - 20:59	1	241	37	0	7	0	0	0	0	0	0	0	0	286
21:00 - 21:59	0	186	30	0	1	0	0	0	0	0	0	0	0	217
22:00 - 22:59	0	158	24	0	2	0	0	0	0	0	0	0	0	184
23:00 - 23:59	0	128	9	0	6	1	0	0	0	0	0	0	0	144
Totals	28	4920	969	6	184	3	1	3	0	0	0	0	0	6114
Percent of Total	0.5	80.5	15.8	0.1	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of AM	0.2	77.8	18.3	0.1	3.5	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.6	81.8	14.7	0.1	2.8	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 197 % Trucks: 3.2 AM % Trucks: 3.7 PM % Trucks: 3.0

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Sunday, 02/12/2017

Unit ID: 15121539

Location: Range (south location)

Г	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	77	12	0	2	0	0	1	2	0	0	0	0	94
01:00 - 01:59	0	51	17	0	2	0	0	0	1	0	0	0	0	71
02:00 - 02:59	0	54	12	0	3	0	0	0	0	0	0	0	0	69
03:00 - 03:59	0	23	3	0	1	0	0	0	0	0	0	0	0	27
04:00 - 04:59	0	23	4	0	0	0	0	0	1	0	0	0	0	28
05:00 - 05:59	0	26	5	0	3	0	0	0	0	0	0	0	0	34
06:00 - 06:59	0	44	11	0	3	0	0	0	0	0	0	0	0	58
07:00 - 07:59	0	84	31	0	3	0	0	0	0	0	0	0	0	118
08:00 - 08:59	2	152	32	0	5	0	0	0	1	0	0	0	0	192
09:00 - 09:59	1	270	55	0	12	0	0	0	0	0	0	0	0	338
10:00 - 10:59	3	338	78	0	11	2	0	0	0	0	0	0	0	432
11:00 - 11:59	4	370	91	1	13	2	0	0	0	0	0	0	0	481
12:00 - 12:59	6	465	94	1	14	0	0	0	0	0	0	0	0	580
13:00 - 13:59	4	342	82	0	18	1	0	0	0	0	0	0	0	447
14:00 - 14:59	2	320	80	0	14	0	0	0	0	0	0	0	0	416
15:00 - 15:59	5	330	82	0	11	0	0	0	0	0	0	0	1	429
16:00 - 16:59	3	334	64	0	9	0	1	0	0	0	0	0	0	411
17:00 - 17:59	6	358	58	0	9	0	0	0	0	0	1	0	0	432
18:00 - 18:59	7	296	54	0	12	1	1	0	0	0	0	0	0	371
19:00 - 19:59	1	194	49	0	6	0	0	1	0	0	0	0	0	251
20:00 - 20:59	1	142	31	0	9	0	0	0	0	0	0	0	0	183
21:00 - 21:59	0	125	21	0	2	0	0	0	0	0	0	0	0	148
22:00 - 22:59	0	108	10	0	6	0	0	0	0	0	0	0	0	124
23:00 - 23:59	0	75	6	0	1	0	0	0	0	0	0	0	0	82
Totals	45	4601	982	2	169	6	2	2	5	0	1	0	1	5816
Percent of Total	8.0	79.1	16.9	0.0	2.9	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.5	77.9	18.1	0.1	3.0	0.2	0.0	0.1	0.3	0.0	0.0	0.0	0.0	100
Percent of PM	0.9	79.7	16.3	0.0	2.9	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 188 % Trucks: 3.2 AM % Trucks: 3.6 PM % Trucks: 3.1

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Monday, 02/13/2017

Unit ID: 15121539

Location: Range (south location)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	37	2	0	0	1	0	0	0	0	0	0	0	40
01:00 - 01:59	0	29	4	0	1	0	0	0	0	0	0	0	0	34
02:00 - 02:59	0	24	3	0	0	0	0	0	0	0	0	0	0	27
03:00 - 03:59	0	19	7	0	1	1	0	0	0	0	0	0	0	28
04:00 - 04:59	0	56	22	0	1	2	0	0	0	0	0	0	0	81
05:00 - 05:59	1	91	28	1	6	0	0	0	0	1	0	0	0	128
06:00 - 06:59	0	186	52	5	12	2	1	0	0	0	0	0	0	258
07:00 - 07:59	12	440	94	6	17	2	0	1	1	0	1	1	0	575
08:00 - 08:59	1	448	85	0	26	4	0	1	0	0	0	0	0	565
09:00 - 09:59	1	302	80	1	20	1	0	1	1	0	0	0	0	407
10:00 - 10:59	2	288	81	1	12	2	0	1	2	0	0	0	0	389
11:00 - 11:59	2	329	78	0	21	4	0	1	0	0	0	0	0	435
12:00 - 12:59	0	355	105	0	25	1	0	1	1	0	0	0	0	488
13:00 - 13:59	5	387	96	1	28	2	0	0	6	0	0	0	1	526
14:00 - 14:59	3	423	105	5	32	2	0	0	7	0	0	0	0	577
15:00 - 15:59	9	546	103	5	38	5	1	2	3	1	1	0	1	715
16:00 - 16:59	1	501	118	4	27	5	0	0	1	0	0	0	0	657
17:00 - 17:59	2	584	111	2	13	1	0	0	4	0	0	0	0	717
18:00 - 18:59	2	375	87	2	15	0	0	0	0	0	0	0	0	481
19:00 - 19:59	1	287	44	1	11	0	0	0	0	0	0	0	0	344
20:00 - 20:59	0	209	33	0	5	0	0	0	0	0	0	0	0	247
21:00 - 21:59	0	127	26	0	3	0	0	0	2	0	0	0	0	158
22:00 - 22:59	0	105	16	0	1	0	0	0	0	0	0	0	0	122
23:00 - 23:59	0	49	11	0	1	0	0	0	0	0	0	0	0	61
Totals	42	6197	1391	34	316	35	2	8	28	2	2	1	2	8060
Percent of Total	0.5	76.9	17.3	0.4	3.9	0.4	0.0	0.1	0.3	0.0	0.0	0.0	0.0	100
Percent of AM	0.6	75.8	18.1	0.5	3.9	0.6	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.5	77.5	16.8	0.4	3.9	0.3	0.0	0.1	0.5	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 430 % Trucks: 5.3 AM % Trucks: 5.5 PM % Trucks: 5.2

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Tuesday, 02/14/2017

Unit ID: 15121539

Location: Range (south location)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	24	5	0	0	0	0	0	0	0	0	0	0	29
01:00 - 01:59	0	17	1	0	0	0	0	0	0	0	0	0	0	18
02:00 - 02:59	0	15	5	0	1	0	0	0	0	0	0	0	0	21
03:00 - 03:59	0	30	8	0	0	0	0	0	1	0	0	0	0	39
04:00 - 04:59	0	71	21	0	2	0	0	0	1	0	0	0	0	95
05:00 - 05:59	1	97	31	1	7	1	0	1	1	0	0	0	0	140
06:00 - 06:59	2	186	62	5	9	1	0	1	2	0	0	0	0	268
07:00 - 07:59	3	546	103	3	18	1	0	0	4	1	0	0	0	679
08:00 - 08:59	2	494	78	2	29	4	1	0	7	0	0	0	0	617
09:00 - 09:59	3	330	69	2	23	0	0	1	8	0	0	0	0	436
10:00 - 10:59	3	306	82	0	15	4	0	0	9	0	0	1	0	420
11:00 - 11:59	2	332	76	0	26	1	0	0	7	0	0	0	0	444
12:00 - 12:59	4	381	103	1	17	1	0	1	5	0	0	0	0	513
13:00 - 13:59	4	417	110	1	22	4	0	2	5	0	0	0	0	565
14:00 - 14:59	4	474	135	4	25	1	0	2	3	0	0	0	0	648
15:00 - 15:59	9	570	112	8	29	6	2	2	6	0	0	0	0	744
16:00 - 16:59	4	614	119	3	36	3	0	1	1	0	0	0	0	781
17:00 - 17:59	3	534	122	1	18	2	0	0	0	0	0	0	0	680
18:00 - 18:59	1	357	83	1	17	2	0	1	0	0	0	0	0	462
19:00 - 19:59	0	265	51	0	11	1	0	0	0	0	0	0	0	328
20:00 - 20:59	1	197	29	0	10	0	0	0	1	0	0	0	0	238
21:00 - 21:59	0	126	25	0	3	0	0	0	0	0	0	0	0	154
22:00 - 22:59	0	107	20	0	2	0	0	0	0	0	0	0	0	129
23:00 - 23:59	0	73	12	0	1	0	0	0	0	0	0	0	0	86
Totals	46	6563	1462	32	321	32	3	12	61	1	0	1	0	8534
Percent of Total	0.5	76.9	17.1	0.4	3.8	0.4	0.0	0.1	0.7	0.0	0.0	0.0	0.0	100
Percent of AM	0.5	76.4	16.9	0.4	4.1	0.4	0.0	0.1	1.2	0.0	0.0	0.0	0.0	100
Percent of PM	0.6	77.2	17.3	0.4	3.6	0.4	0.0	0.2	0.4	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 463 % Trucks: 5.4 AM % Trucks: 6.3 PM % Trucks: 4.9

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Wednesday, 02/15/2017

Unit ID: 15121539

Location: Range (south location)

[#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	25	3	0	0	0	0	0	0	0	0	0	0	28
01:00 - 01:59	0	23	5	0	0	0	0	0	0	0	0	0	0	28
02:00 - 02:59	0	19	6	0	1	0	0	0	1	0	0	0	0	27
03:00 - 03:59	0	13	7	0	0	0	0	0	0	0	0	0	0	20
04:00 - 04:59	0	64	19	1	2	0	0	2	0	0	0	0	0	88
05:00 - 05:59	0	90	31	1	7	2	0	1	0	0	0	0	0	132
06:00 - 06:59	0	180	45	6	5	1	1	0	0	0	0	0	0	238
07:00 - 07:59	4	452	92	8	19	4	1	1	2	0	0	1	1	585
08:00 - 08:59	1	434	88	2	20	1	1	0	1	0	0	0	0	548
09:00 - 09:59	1	248	81	1	18	1	0	0	0	0	0	0	0	350
10:00 - 10:59	0	265	74	0	17	5	0	2	1	0	0	0	0	364
11:00 - 11:59	1	291	84	2	19	2	0	2	2	0	0	0	0	403
12:00 - 12:59	0	339	91	1	33	2	0	2	0	0	0	0	0	468
13:00 - 13:59	2	352	79	4	18	6	0	1	1	0	0	0	0	463
14:00 - 14:59	2	411	96	6	27	2	0	2	0	0	0	0	0	546
15:00 - 15:59	2	576	112	4	25	1	0	0	0	0	0	0	0	720
16:00 - 16:59	1	526	117	2	19	1	0	1	0	0	0	0	0	667
17:00 - 17:59	0	533	114	2	36	1	0	1	1	0	0	0	0	688
18:00 - 18:59	0	427	116	2	24	1	0	0	0	0	0	0	0	570
19:00 - 19:59	2	245	62	0	8	0	0	0	0	0	0	0	0	317
20:00 - 20:59	2	243	65	0	4	1	0	0	0	0	0	0	0	315
21:00 - 21:59	0	155	21	2	2	0	0	0	0	0	0	0	0	180
22:00 - 22:59	0	112	12	0	2	0	0	0	0	0	0	0	0	126
23:00 - 23:59	0	67	7	0	2	0	0	0	0	0	0	0	0	76
Totals	18	6090	1427	44	308	31	3	15	9	0	0	1	1	7947
Percent of Total	0.2	76.6	18.0	0.6	3.9	0.4	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.2	74.8	19.0	0.7	3.8	0.6	0.1	0.3	0.2	0.0	0.0	0.0	0.0	100
Percent of PM	0.2	77.6	17.4	0.4	3.9	0.3	0.0	0.1	0.0	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 412 % Trucks: 5.2 AM % Trucks: 5.9 PM % Trucks: 4.8

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Thursday, 02/16/2017

Unit ID: 15121539

Location: Range (south location)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	23	3	0	1	0	0	0	0	0	0	0	0	27
01:00 - 01:59	0	13	5	0	0	0	0	0	0	0	0	0	0	18
02:00 - 02:59	0	18	4	0	0	0	0	1	0	0	0	0	0	23
03:00 - 03:59	0	14	8	0	0	0	0	0	0	0	0	0	0	22
04:00 - 04:59	0	53	18	1	2	0	0	1	0	0	0	0	0	75
05:00 - 05:59	1	90	32	2	8	0	0	0	0	0	0	0	0	133
06:00 - 06:59	1	186	43	4	7	1	0	1	0	0	0	0	0	243
07:00 - 07:59	6	490	110	9	23	4	0	3	2	0	0	0	0	647
08:00 - 08:59	0	474	104	2	23	0	0	1	0	0	0	0	0	604
09:00 - 09:59	1	270	95	1	13	1	0	2	0	0	0	0	0	383
10:00 - 10:59	0	284	67	0	18	1	0	2	1	0	0	0	0	373
11:00 - 11:59	0	333	98	0	15	3	0	1	1	0	0	0	0	451
12:00 - 12:59	2	348	95	2	18	1	0	1	1	0	0	0	0	468
13:00 - 13:59	2	322	94	0	23	2	0	3	2	0	0	0	0	448
14:00 - 14:59	4	435	97	2	26	3	0	1	1	1	0	0	0	570
15:00 - 15:59	4	559	113	3	31	4	1	1	0	0	0	0	0	716
16:00 - 16:59	2	533	118	3	30	2	0	1	0	0	0	0	0	689
17:00 - 17:59	6	587	141	1	24	1	0	1	1	0	0	1	0	763
18:00 - 18:59	2	399	99	0	12	0	0	0	1	0	0	0	0	513
19:00 - 19:59	0	283	48	0	6	0	0	2	0	0	0	0	0	339
20:00 - 20:59	0	213	38	0	4	0	0	0	0	0	0	0	0	255
21:00 - 21:59	0	147	40	0	2	0	0	0	0	0	0	0	0	189
22:00 - 22:59	0	109	19	0	2	0	0	0	0	0	0	0	0	130
23:00 - 23:59	0	72	20	0	5	0	0	1	0	0	0	0	0	98
Totals	31	6255	1509	30	293	23	1	23	10	1	0	1	0	8177
Percent of Total	0.4	76.5	18.5	0.4	3.6	0.3	0.0	0.3	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.3	75.0	19.6	0.6	3.7	0.3	0.0	0.4	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.4	77.4	17.8	0.2	3.5	0.3	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 382 % Trucks: 4.7 AM % Trucks: 5.2 PM % Trucks: 4.4

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Friday, 02/17/2017

Unit ID: 15121539

Location: Range (south location)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	39	7	0	1	0	0	0	0	0	0	0	0	47
01:00 - 01:59	0	38	7	0	1	0	0	1	0	0	0	0	0	47
02:00 - 02:59	0	30	7	0	0	0	0	0	0	0	0	0	0	37
03:00 - 03:59	0	22	9	0	0	0	0	0	0	0	0	0	0	31
04:00 - 04:59	0	49	16	1	2	0	1	1	0	0	0	0	0	70
05:00 - 05:59	1	84	29	1	6	0	0	0	1	0	0	0	0	122
06:00 - 06:59	1	181	65	6	14	0	0	0	0	0	0	0	0	267
07:00 - 07:59	2	458	80	4	18	5	0	1	1	0	0	0	0	569
08:00 - 08:59	2	449	85	1	26	1	0	1	1	0	0	0	0	566
09:00 - 09:59	1	313	96	2	23	0	0	0	0	0	0	0	0	435
10:00 - 10:59	3	285	84	1	18	2	0	0	0	0	0	0	0	393
11:00 - 11:59	2	353	93	0	30	1	0	0	1	0	0	0	0	480
12:00 - 12:59	3	404	85	5	28	5	0	0	2	0	0	0	0	532
13:00 - 13:59	1	397	115	5	24	1	0	4	0	0	0	0	0	547
14:00 - 14:59	1	442	101	4	27	0	0	3	0	0	0	0	0	578
15:00 - 15:59	4	541	120	4	36	1	1	3	0	0	0	0	0	710
16:00 - 16:59	1	582	127	1	26	0	0	0	0	0	0	0	0	737
17:00 - 17:59	1	518	125	2	25	0	0	0	0	0	0	0	0	671
18:00 - 18:59	1	389	96	0	13	1	0	1	0	0	0	0	0	501
19:00 - 19:59	1	288	72	1	10	0	0	1	1	0	0	0	0	374
20:00 - 20:59	1	257	45	1	14	0	0	0	0	0	0	0	0	318
21:00 - 21:59	0	183	32	0	8	0	0	0	0	0	0	0	0	223
22:00 - 22:59	0	142	26	0	4	0	0	0	0	0	0	0	0	172
23:00 - 23:59	0	101	23	0	3	0	0	0	0	0	0	0	0	127
Totals	26	6545	1545	39	357	17	2	16	7	0	0	0	0	8554
Percent of Total	0.3	76.5	18.1	0.5	4.2	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100
Percent of AM	0.4	75.1	18.9	0.5	4.5	0.3	0.0	0.1	0.1	0.0	0.0	0.0	0.0	100
Percent of PM	0.3	77.3	17.6	0.4	4.0	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	100

Truck Summary:

Total Trucks: 438 % Trucks: 5.1 AM % Trucks: 5.6 PM % Trucks: 4.8

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

Daily Total Classes Report

Study Date: Saturday, 02/18/2017

Unit ID: 15121539

Location: Range (south location)

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	Total
00:00 - 00:59	0	66	11	0	3	0	0	0	0	0	0	0	0	80
01:00 - 01:59	1	47	13	0	0	0	0	0	0	0	0	0	0	61
02:00 - 02:59	0	29	11	0	2	0	0	0	0	0	0	0	0	42
03:00 - 03:59	0	25	7	0	2	0	0	0	0	0	0	0	0	34
04:00 - 04:59	0	21	3	0	1	0	0	0	0	0	0	0	0	25
05:00 - 05:59	0	46	15	1	2	0	0	0	0	0	0	0	0	64
06:00 - 06:59	0	55	16	0	4	0	0	0	0	0	0	0	0	75
07:00 - 07:59	2	127	50	0	4	0	0	0	0	0	0	0	0	183
08:00 - 08:59	0	209	60	0	12	0	0	0	0	0	0	0	0	281
09:00 - 09:59	0	280	74	0	11	0	0	1	0	0	0	0	0	366
10:00 - 10:59	0	343	92	0	19	0	0	0	0	0	0	0	0	454
11:00 - 11:59	0	363	94	2	27	0	0	0	0	0	0	0	0	486
12:00 - 12:59	4	404	100	1	17	0	0	0	0	0	0	0	0	526
13:00 - 13:59	3	416	94	0	15	0	0	2	0	0	0	0	0	530
14:00 - 14:59	5	373	88	0	17	1	1	0	0	0	0	0	0	485
15:00 - 15:59	0	383	79	0	16	0	0	0	0	0	0	1	0	479
16:00 - 16:59	4	370	88	1	29	2	0	0	0	0	0	0	0	494
17:00 - 17:59	6	367	61	1	14	0	0	0	0	0	0	0	0	449
18:00 - 18:59	1	330	81	0	14	0	0	1	0	0	0	0	0	427
19:00 - 19:59	1	233	45	0	8	0	0	1	0	0	0	0	0	288
20:00 - 20:59	1	218	44	0	10	0	0	0	0	0	0	0	0	273
21:00 - 21:59	0	177	42	0	5	0	0	0	0	0	0	0	0	224
22:00 - 22:59	0	146	27	0	3	0	0	0	0	0	0	0	0	176
23:00 - 23:59	1	109	10	0	3	0	0	0	0	0	0	0	0	123
Totals	29	5137	1205	6	238	3	1	5	0	0	0	1	0	6625
Percent of Total	0.4	77.5	18.2	0.1	3.6	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	100
Percent of AM	0.1	74.9	20.7	0.1	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
Percent of PM	0.6	78.8	17.0	0.1	3.4	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	100
Truck Summary												· ·		

Truck Summary:

Total Trucks: 254 % Trucks: 3.8 AM % Trucks: 4.2 PM % Trucks: 3.6

Classification Scheme: FHWA (ID: 1)

#1 Motorcycles - 2 Axles

#2 Passenger Cars - 2 Axles

#3 Pickup Trucks, Vans - 2 Axles

#4 Buses

#5 Single Unit - 2 Axles, 6 Tires

#6 Single Unit Truck - 3 Axles

#7 Single Unit - 4 Axles

#8 Single Unit - 4 Axles or Less

#9 Double Unit - 5 Axles

#10 Double Unit - 6 Axles or More

#11 Multi-Unit - 5 Axles or Less

#12 Multi-Unit - 6 Axles

DATE COUNTED: 02/15/17

Range at Minnesota Park

																\ 0
		主				9	4	2	2	8	3	8	2	2		2.3%
		Peak Hour					727	426	969	718	854	892	931	002	421	0.83
		15 Min		0	0	109	143	174	170	231	279	212	209	0	0	
			Rt Dem	0	0	18	2	18	18	28	38	30	23	0	0	119
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	pund	ta Park	Rt Dep			18	2	18	18	28	38	30	23			
	Eastbound	Minnesota Park	Lt Dem	0	0	7	15	22	15	30	25	15	25	0	0	95
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep			7	15	22	15	30	25	15	25			
			Thru Dem	0	0	21	24	35	36	55	55	45	45	0	0	200
AM PEAK PERIOD			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
AM PE	punoc	Road	Thru Dep			21	24	35	36	22	55	45	45			
	Northbound	Range Road	Lt Dem	0	0	21	35	46	20	46	99	59	51	0	0	222
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep			21	35	46	20	46	99	29	51			
			Rt Dem	0	0	21	36	27	23	33	44	45	41	0	0	163
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	puno	Road	Rt Dep			21	36	27	23	33	44	45	41			
	Southbound	Range Road	Thru Dem	0	0	21	28	56	28	39	51	18	24	0	0	132
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Thru Dep			21	28	56	28	39	51	18	24			Hour
	C+3r+	Jimo Timo	<u>'</u>	00:9	6:15	08:9	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	AM Peak Hour

					,					,				,	_	
		¥		2	8	4	3	0	0	0	1	3	0	3	1	0.7%
		Peak Hour					826	982	1015	896	986	950	923	924	894	0.92
		15 Min		216	217	275	270	220	250	228	238	234	223	229	208	
			Rt Dem	47	39	40	33	24	39	28	47	40	46	39	32	136
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	punc	ta Park	Rt Dep	47	39	40	33	24	39	28	47	40	46	39	32	
	Eastbound	Minnesota Park	Lt Dem	25	38	42	31	34	43	30	44	39	40	40	30	150
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	25	38	42	31	34	43	30	44	39	40	40	30	
0			Thru Dem	42	38	37	55	45	52	44	35	47	42	47	39	189
PM PEAK PERIOD			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
PM PE	Northbound	Road	Thru Dep	42	38	37	55	45	52	44	35	47	42	47	39	
	North	Range Road	Lt Dem	35	20	53	09	43	37	42	41	36	34	39	35	193
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	35	20	53	09	43	37	42	41	36	34	39	35	
			Rt Dem	28	32	39	39	27	30	44	29	21	22	15	28	135
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	puno	Road	Rt Dep	78	32	39	39	27	30	44	29	21	22	15	28	
	Southb	Range	Thru Dem	39	20	64	52	47	49	40	42	51	39	49	44	212
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Thru Dep	39	20	64	52	47	49	40	42	51	39	49	44	Hour
	Start Range Road	ש ב	15:00	15:15	15:30	15:45	16:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	PM Peak Hour	

DATE COUNTED: 02/15/17

Range at Little Italy

		¥								6	3	7	3			3.0%
		Peak Hour					0	0	0	175	369	564	728			0.93
		15 Min		0	0	0	0	0	0	175	194	195	164	0	0	
			Rt Dem	0	0	0	0	0	0	12	က	2	П	0	0	18
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	pund	load	Rt Dep	0	0	0	0	0	0	12	က	2	1	0	0	
	Northbound	Range Road	Thru Dem	0	0	0	0	0	0	85	79	83	89	0	0	315
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Thru Dep	0	0	0	0	0	0	85	79	83	89	0	0	
			Rt Dem	0	0	0	0	0	0	6	37	34	30	0	0	110
AM PEAK PERIOD			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
AM PE	punc	taly	Rt Dep	0	0	0	0	0	0	6	37	34	30	0	0	
	Westbound	Little Italy	Lt Dem	0	0	0	0	0	0	2	6	6	7	0	0	30
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	0	0	0	0	0	0	2	6	6	7	0	0	
			Thru Dem	0	0	0	0	0	0	59	09	09	20	0	0	229
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
	punoqu	Range Road	Thru Dep	0	0	0	0	0	0	29	09	09	20	0	0	
	South	Range	Lt Dem	0	0	0	0	0	0	2	9	7	∞	0	0	56
			۲۲ Ö	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	0	0	0	0	0	0	2	9	7	∞	0	0	Hour
)	C+2rt	Timo	υ = =	00:9	6:15	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	AM Peak Hour

		¥				2	7	1	1							1.4%
		Peak Hour					437	615	800				0	0	0	0.94
		15 Min		0	0	212	225	178	185	0	0	0	0	0	0	
			Rt Dem	0	0	7	8	2	6	0	0	0	0	0	0	56
			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
	pund	oad	Rt Dep	0	0	7	∞	2	6	0	0	0	0	0	0	
	Northbound	Range Road	Thru Dem	0	0	26	84	85	70	0	0	0	0	0	0	295
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Thru Dep	0	0	26	84	85	70	0	0	0	0	0	0	
0			Rt Dem	0	0	35	30	12	13	0	0	0	0	0	0	90
PM PEAK PERIOD			Rt Q	0	0	0	0	0	0	0	0	0	0	0	0	
PM PE	puno	Italy	Rt Dep	0	0	35	30	12	13	0	0	0	0	0	0	
	Westbound	Little Italy	Lt Dem	0	0	15	12	∞	2	0	0	0	0	0	0	40
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	0	0	15	12	∞	2	0	0	0	0	0	0	
			Thru Dem	0	0	92	85	61	9/	0	0	0	0	0	0	314
			Thru Q	0	0	0	0	0	0	0	0	0	0	0	0	
	thbound	nge Road	Thru Dep	0	0	95	85	61	9/	0	0	0	0	0	0	
	South	Range	Lt Dem	0	0	7	9	10	12	0	0	0	0	0	0	35
			Lt Q	0	0	0	0	0	0	0	0	0	0	0	0	
			Lt Dep	0	0	7	9	10	12	0	0	0	0	0	0	Hour
	C+2,r+	Timo	ט = =	15:00	15:15	15:30	15:45	16:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	PM Peak Hour

Appendix B: Vistro Output

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 20.2
Level Of Service: C
Volume to Capacity (v/c): 0.555

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	+	1	f	→	T		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	0	0	0	0 0		0	
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	10	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Base Volume Input [veh/h]	232	209	138	171	99	125	
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Heavy Vehicles Percentage [%]	2.30	2.30	2.30	2.30	2.30	2.30	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Permi
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						
Lead / Lag	Lead	-		-	Lead	-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	14.04	14.04	14.04 19.40		33.45	33.45				
Movement LOS	В В В В		С	С						
d_A, Approach Delay [s/veh]	14	.04	19	.40	33.45					
Approach LOS	E	3	ŀ	3	С					
d_I, Intersection Delay [s/veh]			20	.20						
Intersection LOS		С								
Intersection V/C		0.555								

Sequence

Ring 1	1	2	4	-	-	-	-	-	-	-	ı	ı	-	-	-	-
Ring 2	6	1	-	-	-	-	-	-		-				-	-	
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Scenario 1: 1: AM 2020 BUILD

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 13.1
Level Of Service: B
Volume to Capacity (v/c): 0.316

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	4	ıÎ	f	→	7		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	1	0	0	0	1	0	
Pocket Length [ft]	150.00	100.00	100.00	100.00	150.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	0	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Ra		
Base Volume Input [veh/h]	232	209	138	171	99	125	
Base Volume Adjustment Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles Percentage [%]	2.30	2.30	2.30	2.30	2.30	2.30	

Scenario 1: 1: AM 2020 BUILD

Intersection Settings

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Overla
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						1,4
Lead / Lag	Lead	-	-	-	Lead	-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

Scenario 1: 1: AM 2020 BUILD

Movement, Approach, & Intersection Results

d_M, Delay for Movement [s/veh]	8.43	6.01	19.40	19.40	22.42	11.06					
Movement LOS	A A B B		С	В							
d_A, Approach Delay [s/veh]	7.	28	19	.40	16.07						
Approach LOS	,	4	E	3	В						
d_I, Intersection Delay [s/veh]		13.14									
Intersection LOS	В										
Intersection V/C											

Sequence

Ring 1	1	2	4	-	-	-	-	-	-	-	ı	ı	-	-	-	-
Ring 2	6	1	-	-	-	-	-	-		-				-	-	
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 82.4
Level Of Service: F
Volume to Capacity (v/c): 1.001

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	+	1	f	→	+		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	0 0		0		0	0	
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	0	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Base Volume Input [veh/h]	315	284	187	231	135	169	
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Heavy Vehicles Percentage [%]	2.30	2.30	2.30	2.30	2.30	2.30	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Permi
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						
Lead / Lag	Lead	-	Lead			
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	20	40	25	0	15	20
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	30.00	30.00	172.71	172.71	61.52	61.52				
Movement LOS	С	С	F F		E	E				
d_A, Approach Delay [s/veh]	30	.00	172	2.71	61.52					
Approach LOS	(2	F	=	Е					
d_I, Intersection Delay [s/veh]		82.36								
Intersection LOS	F									
Intersection V/C	1.001									

Sequence

Ring 1	1	2	4	-	-	-	-	-	-	-	ı	ı	-	-	-	-
Ring 2	6	1	-	-	-	-	-	-		-				-	-	
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 25s SG: 2 20s SG: 4 20s

SG: 6 45s

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 16.9
Level Of Service: B
Volume to Capacity (v/c): 0.426

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	4	ıÎ	f	→	7		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	1	0	0	0	1	0	
Pocket Length [ft]	150.00	100.00	100.00	100.00	150.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	0	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Ra		
Base Volume Input [veh/h]	315	284	187	231	135	169	
Base Volume Adjustment Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles Percentage [%]	2.30	2.30	2.30	2.30	2.30	2.30	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Overla
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						1,4
Lead / Lag	Lead	-	-	-	Lead	-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	13.59	6.56	26.19	26.19	24.08	11.78				
Movement LOS	В	А	ССС		С	В				
d_A, Approach Delay [s/veh]	10	.26	26	.19	17.24					
Approach LOS	E	3	(В					
d_I, Intersection Delay [s/veh]		16.90								
Intersection LOS		В								
Intersection V/C	0.426									

Sequence

Ring 1	1	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	6	ı	-	-	-	-	-	-	-	-	ı	ı	ı	-		1
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 22.4
Level Of Service: C
Volume to Capacity (v/c): 0.553

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	+	1	f	→	T		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	0	0	0	0	0	0	
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	10	n	10	no		

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Base Volume Input [veh/h]	202	198	222	141	157	142	
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Heavy Vehicles Percentage [%]	0.70	0.70	0.70	0.70	0.70	0.70	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Permi
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						
Lead / Lag	Lead			-	Lead	-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	10.67	10.67	19.44	19.44	41.75	41.75				
Movement LOS	В	В	В В		D	D				
d_A, Approach Delay [s/veh]	10	.67	19	.44	41.75					
Approach LOS	E	3	E	3	D					
d_I, Intersection Delay [s/veh]		22.42								
Intersection LOS		С								
Intersection V/C			0.5	553						

Sequence

Ring 1	1	2	4	-	ı	-	-	-	-	-	ı	ı	-	ı	-	-
Ring 2	6	1	-	-	•	-	-	-	-	-			-	•		
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized Analysis Method: HCM2010 Analysis Period: 15 minutes

Delay (sec / veh): 14.3 Level Of Service: В Volume to Capacity (v/c): 0.319

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	4	ıÎ	f	→	7		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	1	0	0	0	1	0	
Pocket Length [ft]	150.00	100.00	100.00	100.00	150.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	10	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Ra		
Base Volume Input [veh/h]	202	198	222	141	157	142	
Base Volume Adjustment Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles Percentage [%]	0.70	0.70	0.70	0.70	0.70	0.70	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Overla
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						1,4
Lead / Lag	Lead	Lead Lead				-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	7.73	5.78	19.44	19.44	24.27	11.06				
Movement LOS	А	А	ВВВ		С	В				
d_A, Approach Delay [s/veh]	6.	77	19	.44	18.01					
Approach LOS	,	A	E	3	В					
d_I, Intersection Delay [s/veh]		14.26								
Intersection LOS	В									
Intersection V/C	0.319									

Sequence

Ring 1	1	2	4	-	ı	-	-	-	-	-	ı	ı	-	ı	-	-
Ring 2	6	1	-	-	•	-	-	-	-	-			-	•		
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Intersection Level Of Service Report #1: Minnesota Park Rd at S. Range Rd

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 61.5
Level Of Service: E
Volume to Capacity (v/c): 0.947

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	+	1	f	→	+		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	0	0	0	0	0	0	
Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	0	n	10	no		

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Base Volume Input [veh/h]	274	268	301	191	213	193	
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Heavy Vehicles Percentage [%]	0.70	0.70	0.70	0.70	0.70	0.70	

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Permi
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						
Lead / Lag	Lead	-	-	-	Lead	-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	15	40	20	0	15	15
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	29.07	29.07	29.07 57.39		109.60	109.60				
Movement LOS	С	С	E E		F	F				
d_A, Approach Delay [s/veh]	29	.07	57	.39	109.60					
Approach LOS	(E	Ē	F					
d_I, Intersection Delay [s/veh]		61.48								
Intersection LOS	E									
Intersection V/C	0.947									

Sequence

Ring 1	1	2	4	-	-	-	-	-	-	-	ı	ı	-	-	-	-
Ring 2	6	1	-	-	-	-	-	-		-				-	-	
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 20s SG: 2 25s SG: 4 20s

SG: 6 45s

Control Type: Signalized
Analysis Method: HCM2010
Analysis Period: 15 minutes

Delay (sec / veh): 18.1
Level Of Service: B
Volume to Capacity (v/c): 0.434

Intersection Setup

Name	Mi	Pa	Mi	Pa	S. Range Rd.		
Approach	North	bound	South	bound	Eastbound		
Lane Configuration	4	ıÎ	f	→	7		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Pocket	1	0	0	0	1	0	
Pocket Length [ft]	150.00	100.00	100.00	100.00	150.00	100.00	
Speed [mph]	35	.00	35	.00	35.00		
Grade [%]	0.	00	0.	00	0.00		
Crosswalk	n	0	n	0	no		

Name	Mi	Pa	Mi	Pa	S. Ra		
Base Volume Input [veh/h]	274	268	301	191	213	193	
Base Volume Adjustment Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles Percentage [%]	0.70	0.70	0.70	0.70	0.70	0.70	

Version 3.00-06

Located in CBD	no
Signal Coordination Group	-
Cycle Length [s]	65
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	LeadGreen
Permissive Mode	SingleBand
Lost time [s]	0.00

Control Type	Protected Permitted	Permi	Permi	Permi	Protec	Overla
Signal Group	1	6	2	0	4	1
Auxiliary Signal Groups						1,4
Lead / Lag	Lead	Lead				-
Minimum Green [s]	5	5	5	0	5	5
Maximum Green [s]	10	40	25	0	15	10
Amber [s]	4.0	4.0	4.0	0.0	4.0	4.0
All red [s]	1.0	1.0	1.0	0.0	1.0	1.0

d_M, Delay for Movement [s/veh]	11.56	6.20	26.65	26.65	27.45	11.80				
Movement LOS	В	А	СС		С	В				
d_A, Approach Delay [s/veh]	8.	91	26	.65	20.02					
Approach LOS	,	A	(С					
d_I, Intersection Delay [s/veh]		18.11								
Intersection LOS	В									
Intersection V/C	0.434									

Sequence

Ring 1	1	2	4	-	ı	-	-	-	-	-	ı	ı	-	ı	-	-
Ring 2	6	1	-	-	•	-	-	-	-	-	ı		-	•		
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 15s SG: 2 30s SG: 4 20s SG: 6 45s

Appendix C: Left and Right Turn Lane Warrants

2017 AM PEAK HOUR LEFT-TURN LANE WARRANT FOR S. RANGE ROAD

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) INPUT

Value	4/ L	53% 6	422	295
Variable	85 th percentile speed, mph:	Percent of left-turns in advancing volume (V_A) , %:	Advancing volume (V_A) , veh/h:	Opposing volume (V_O), veh/h:

OUTPUT	
Variable	Value
Limiting advancing volume (V_A) , veh/h:	797
Guidance for determining the need for a major-road left-turn bay:	ıy:

Left-turn treatment warranted.

	200
Left-turn treatment.	009
Left-turn transport	500 , veh/h
	400 rime (V _A)
	200 300 400 500 Advancing Volume (V _A), veh/h
	200 \dvanc
Leff-turn treatment not warranted.	100
	0
90 70 90 90 90 90 90 90 90 90	
hpposing Volume (V _O), veh/h	0

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2017 PM PEAK HOUR LEFT-TURN LANE WARRANT FOR S. RANGE ROAD

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English) INPUT

OUTPUT Variable

 $\begin{tabular}{ll} Value & Value \\ Limiting advancing volume (V_A), veh/h: & 248 \\ \hline {\bf Guidance for determining the need for a major-road left-turn bay:} \\ \hline {\bf Left-turn treatment warranted.} \\ \hline \end{tabular}$

	200
Leff-turn treatment.	009
Left-turn tr	500 , veh/h
	200 300 400 500 Advancing Volume (V _A), veh/h
-	300 ing Volu
	200 Advanci
Left-turn treatment not warranted.	100
η/ηθν ,(_O V) əmuloV gnisoqq	0

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	2.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Roadway geometry:	2-lane roadw ay	770					
Variable	Value				Add	Add right - furn bay	Ver
Major-road speed, mph:	35	I/U				3	
Major-road volume (one direction), veh/h:	295						
Right-turn volume, veh/h:	163	00. 'əu					
		⊗ unjo					
<u> </u>		ο Ο Ο					
OUTPUT							
Variable	Value	I uT					
Limiting right-turn volume, veh/h:	1400			/			
Guidance for determining the need for a major-road		So					
right-turn bay for a 2-lane roadway:		N	-		-	-	-
Do NOT add right-turn bay.		200	400 6	008 009	1000	1000 1200 1400	1400
			Major-Ro	Major-Road Volume (one direction), veh/h	one direc	tion), veł	/h

2017 PM PEAK HOUR RIGHT TURN LANE WARRANT FOR S. RANGE ROAD

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Roadway geometry:	2-lane roadw ay	dw ay	7						
Variable		Value		4			Ado	Add right - turn bav) ved
Major-road speed, mph:		35	170 170						(52
Major-road volume (one direction), veh/h:		347							
Right-turn volume, veh/h:		135	00L 'əu						
OUTPUT			ο ₀ ο _λ u						
Variable		Value	ר ער 40						
Limiting right-turn volume, veh/h:		276							
Guidance for determining the need for a major-road	рі		1 g i			7			
right-turn bay for a 2-lane roadway:			<u>_</u>		-	-	-		
Do NOT add right-turn bay.			200	400	009	800	1000	1200	1400
				Major	Major-Road Volume (one direction), veh/h	olume (o	ne direc	tion), ve	μγ

2040 AM PEAK HOUR RIGHT TURN LANE WARRANT FOR S. RANGE ROAD

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Koadway geometry:	vay ▼		140
Variable	Value	Ч	<u>-</u>
Major-road speed, mph:	35	/ 	120
Major-road volume (one direction), veh/h:	418	ЭΛ	
Right-turn volume, veh/h:	231	'əu	3

Roadway geometry:	2-lane roadw ay ▼	
Variable	Value	ų
Major-road speed, mph:	35	I/ Y ÷
Major-road volume (one direction), veh/h:	418	ЭΛ
Right-turn volume, veh/h:	231	'əu
OUTPUT Variable	Value	Lurn
Limiting right-turn volume, veh/h:	394	L-JL
Guidance for determining the need for a major-road	road	lgi <i>S</i>
right-turn bay for a 2-lane roadway:		4
Do NOT add right-turn bay.	ay.	

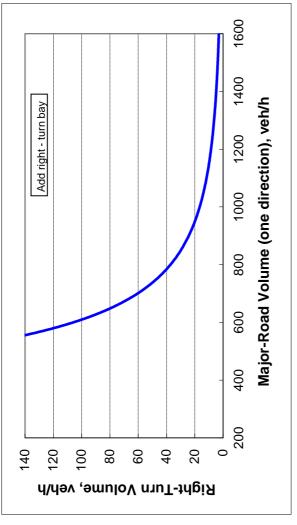
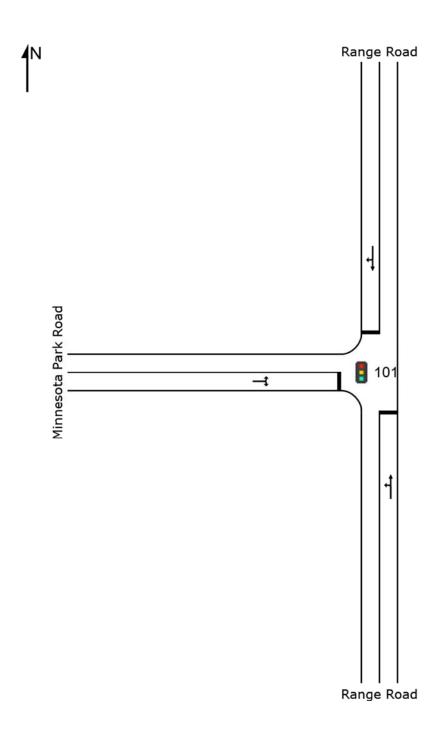


Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

INPUT								
Roadway geometry:	2-lane roadw ay	140						
Variable	Value					Ado	Add right - furn bay) yed
Major-road speed, mph:	35	150 H/4		_			5	52
Major-road volume (one direction), veh/h:	492			_				
Right-turn volume, veh/h:	191	00 'əu						
OUTPUT		09 \ u.						
Variable	Value	Ini 140						
Limiting right-turn volume, veh/h:	218							
Guidance for determining the need for a major-road		1 g i						
right-turn bay for a 2-lane roadway:		8	-	-	-	-		
Do NOT add right-turn bay.		200	400	009	800	1000	1200 140	4
			Major	-Road V	olume (c	Major-Road Volume (one direction), veh/h	tion), ve	μĀ


1600

1400

Appendix D: Sidra Outputs

Site: 101 [1 Exist 2017 AM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [1 Exist 2017 AM Signal]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

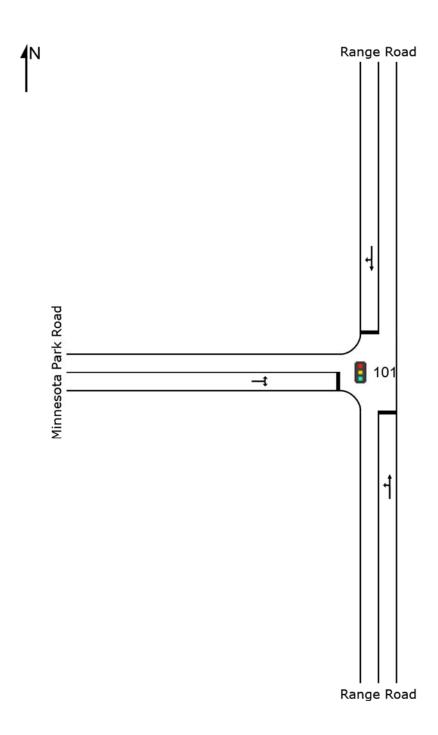
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range Ro	oad									
3	L2	267	2.3	0.737	12.1	LOS B	11.0	279.6	0.85	0.77	30.2
8	T1	241	2.3	0.737	12.1	LOS B	11.0	279.6	0.85	0.77	31.4
Appro	ach	508	2.3	0.737	12.1	LOS B	11.0	279.6	0.85	0.77	30.7
North:	Range Ro	ad									
4	T1	196	2.3	0.503	11.2	LOS B	7.6	194.0	0.79	0.69	32.0
14	R2	159	2.3	0.503	11.2	LOS B	7.6	194.0	0.79	0.69	31.0
Appro	ach	355	2.3	0.503	11.2	LOS B	7.6	194.0	0.79	0.69	31.5
West:	Minnesota	Park Road									
5	L2	114	2.3	0.571	14.8	LOS B	6.2	158.5	0.90	0.75	28.1
12	R2	143	2.3	0.571	14.8	LOS B	6.2	158.5	0.90	0.75	28.3
Appro	ach	258	2.3	0.571	14.8	LOS B	6.2	158.5	0.90	0.75	28.2
All Vel	nicles	1122	2.3	0.737	12.4	LOS B	11.0	279.6	0.84	0.74	30.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:52 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [2 No Build 2020 AM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [2 No Build 2020 AM Signal]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Capacity): Results for 3 years

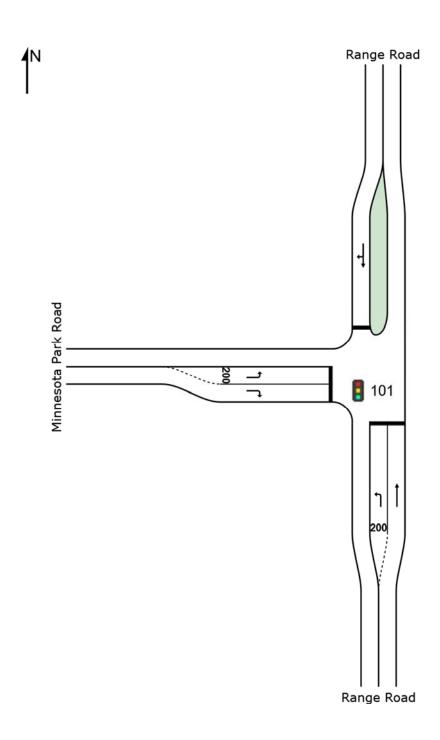
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range Ro	oad									
3	L2	280	2.3	0.776	14.2	LOS B	12.0	305.2	0.89	0.84	29.3
8	T1	252	2.3	0.776	14.2	LOS B	12.0	305.2	0.89	0.84	30.5
Appro	ach	532	2.3	0.776	14.2	LOS B	12.0	305.2	0.89	0.84	29.9
North:	Range Ro	ad									
4	T1	166	2.3	0.588	11.0	LOS B	8.0	203.2	0.82	0.72	31.8
14	R2	206	2.3	0.588	11.0	LOS B	8.0	203.2	0.82	0.72	30.8
Appro	ach	372	2.3	0.588	11.0	LOS B	8.0	203.2	0.82	0.72	31.2
West:	Minnesota	Park Road									
5	L2	120	2.3	0.598	15.8	LOS B	6.8	172.6	0.91	0.76	27.7
12	R2	150	2.3	0.598	15.8	LOS B	6.8	172.6	0.91	0.76	27.9
Appro	ach	270	2.3	0.598	15.8	LOS B	6.8	172.6	0.91	0.76	27.8
All Vel	nicles	1174	2.3	0.776	13.6	LOS B	12.0	305.2	0.87	0.78	29.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:53 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [3 Alt 1 2020 AM Signal - w Turn Lane]

New Site Signals - Pretimed Isolated

Site: 101 [3 Alt 1 2020 AM Signal - w Turn Lane]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Capacity): Results for 3 years

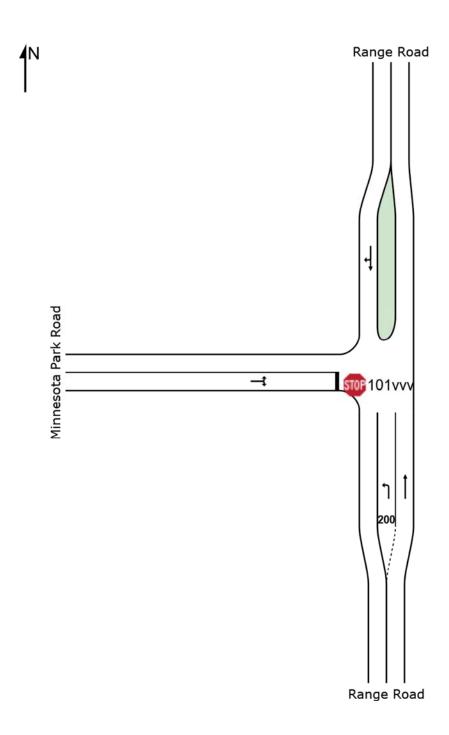
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	Range Ro	oad									
3	L2	280	2.3	0.477	8.1	LOS A	4.7	119.3	0.78	0.65	30.9
8	T1	252	2.3	0.221	5.6	LOS A	3.8	95.9	0.47	0.40	36.3
Appro	ach	532	2.3	0.477	6.9	LOS A	4.7	119.3	0.63	0.53	33.2
North:	Range Ro	ad									
4	T1	166	2.3	0.580	10.6	LOS B	7.9	201.6	0.82	0.71	32.0
14	R2	206	2.3	0.580	10.6	LOS B	7.9	201.6	0.82	0.71	31.0
Appro	ach	372	2.3	0.580	10.6	LOS B	7.9	201.6	0.82	0.71	31.4
West:	Minnesota	Park Road									
5	L2	120	2.3	0.293	20.9	LOS C	3.2	82.5	0.87	0.69	26.1
12	R2	150	2.3	0.141	8.0	LOS A	0.9	22.3	0.24	0.20	34.3
Appro	ach	270	2.3	0.293	9.7	LOS A	3.2	82.5	0.52	0.42	30.1
All Vel	nicles	1174	2.3	0.580	8.7	LOS A	7.9	201.6	0.67	0.56	31.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:54 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (Two-Way)

Site: 101vvv [4 Alt 2 2020 AM TWS]

New Site Stop (Two-Way)

Design Life Analysis (Capacity): Results for 3 years

Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range Ro	oad									
3	L2	280	2.3	0.255	5.7	LOS A	1.2	29.3	0.49	0.40	31.8
8	T1	252	2.3	0.136	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	532	2.3	0.255	3.0	NA	1.2	29.3	0.26	0.21	35.2
North:	Range Ro	ad									
4	T1	166	2.3	0.220	0.0	LOS A	0.0	0.0	0.00	0.00	37.7
14	R2	206	2.3	0.220	0.0	LOS A	0.0	0.0	0.00	0.00	36.3
Appro	ach	372	2.3	0.220	0.0	NA	0.0	0.0	0.00	0.00	36.9
West:	Minnesota	Park Road									
5	L2	120	2.3	0.628	39.9	LOS E ¹¹	5.3	135.3	0.61	0.72	24.2
12	R2	150	2.3	0.628	15.9	LOS C	5.3	135.3	0.61	0.72	24.3
Appro	ach	270	2.3	0.628	26.5	LOS D	5.3	135.3	0.61	0.72	24.3
All Vel	nicles	1174	2.3	0.628	7.5	NA	5.3	135.3	0.26	0.26	32.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

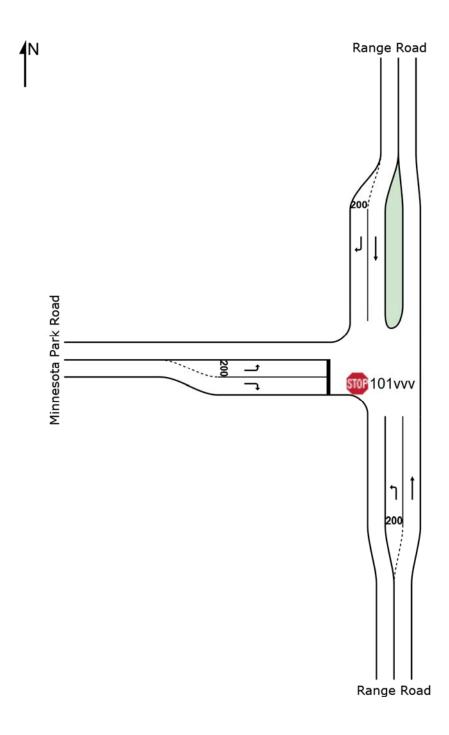
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:54 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101vvv [5 Alt 3 2020 AM TWS - w Turn Lanes]

New Site Stop (Two-Way)

🚥 Site: 101vvv [5 Alt 3 2020 AM TWS - w Turn Lanes]

New Site Stop (Two-Way)

Design Life Analysis (Capacity): Results for 3 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range R										
3	L2	280	2.3	0.250	5.5	LOS A	1.2	29.4	0.48	0.38	32.0
8	T1	252	2.3	0.136	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	532	2.3	0.250	2.9	NA	1.2	29.4	0.25	0.20	35.3
North:	Range Ro	oad									
4	T1	166	2.3	0.090	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
14	R2	206	2.3	0.131	0.0	LOS A	0.0	0.0	0.00	0.00	34.8
Appro	ach	372	2.3	0.131	0.0	NA	0.0	0.0	0.00	0.00	37.0
West:	Minnesota	a Park Road									
5	L2	120	2.3	0.483	32.4	LOS D	2.4	62.2	0.86	0.96	22.9
12	R2	150	2.3	0.185	10.4	LOS B	1.0	24.5	0.43	0.29	29.4
Appro	ach	270	2.3	0.483	20.2	LOS C	2.4	62.2	0.62	0.59	26.1
All Vel	nicles	1174	2.3	0.483	6.0	NA	2.4	62.2	0.26	0.23	33.1

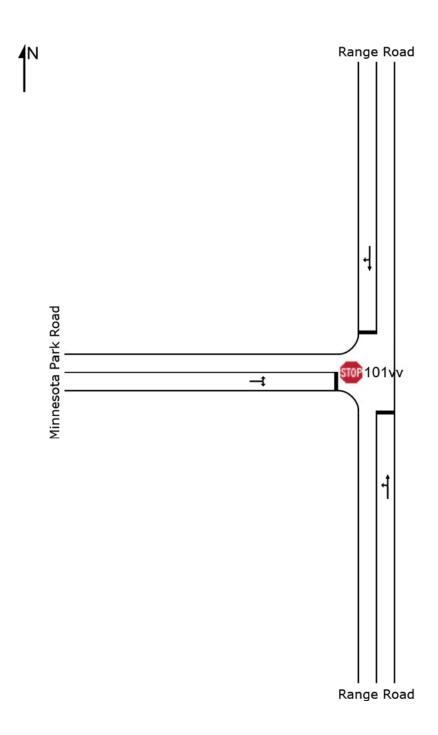
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:55 PM
Project: C:\Users\lamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

🥶 Site: 101v∨ [6 Alt 4 2020 AM AWS]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 3 years

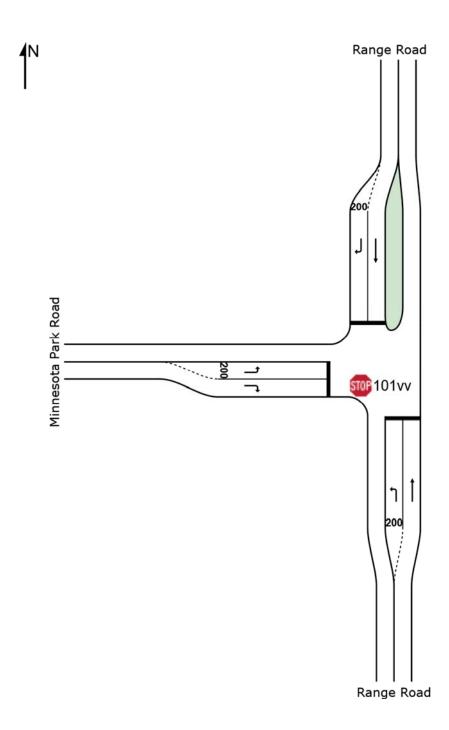
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	: Range Ro	oad									
3	L2	280	2.3	0.592	12.7	LOS B	3.1	79.7	0.78	1.32	28.7
8	T1	252	2.3	0.592	12.7	LOS B	3.1	79.7	0.78	1.32	28.8
Appro	ach	532	2.3	0.592	12.7	LOS B	3.1	79.7	0.78	1.32	28.8
North:	Range Ro	ad									
4	T1	166	2.3	0.624	18.5	LOS C	3.6	91.5	0.93	1.49	26.8
14	R2	206	2.3	0.624	18.5	LOS C	3.6	91.5	0.93	1.49	26.9
Appro	ach	372	2.3	0.624	18.5	LOS C	3.6	91.5	0.93	1.49	26.9
West:	Minnesota	Park Road									
5	L2	120	2.3	0.681	29.4	LOS D	4.3	110.5	1.00	1.63	23.6
12	R2	150	2.3	0.681	29.4	LOS D	4.3	110.5	1.00	1.63	23.8
Appro	ach	270	2.3	0.681	29.4	LOS D	4.3	110.5	1.00	1.63	23.7
All Vel	nicles	1174	2.3	0.681	18.4	LOSC	4.3	110.5	0.88	1.44	26.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:56 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

🥶 Site: 101vv [7 Alt 5 2020 AM AWS - w Turn Lanes]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 3 years

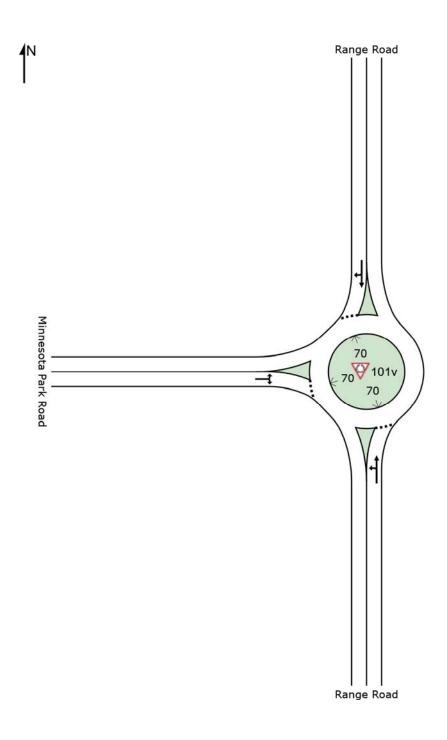
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range Ro	oad									
3	L2	280	2.3	0.539	14.4	LOS B	2.7	69.2	0.93	1.40	28.2
8	T1	252	2.3	0.529	14.8	LOS B	2.6	67.2	0.94	1.40	28.2
Appro	ach	532	2.3	0.539	14.6	LOS B	2.7	69.2	0.93	1.40	28.2
North:	Range Ro	ad									
4	T1	166	2.3	0.507	18.9	LOS C	2.5	63.2	0.99	1.43	26.8
14	R2	206	2.3	0.562	20.1	LOS C	3.0	75.2	0.99	1.47	26.4
Appro	ach	372	2.3	0.562	19.6	LOS C	3.0	75.2	0.99	1.45	26.6
West:	Minnesota	Park Road									
5	L2	120	2.3	0.431	18.6	LOS C	1.9	49.5	1.00	1.38	26.9
12	R2	150	2.3	0.478	19.2	LOS C	2.3	57.5	0.99	1.40	26.7
Appro	ach	270	2.3	0.478	18.9	LOS C	2.3	57.5	0.99	1.39	26.8
All Vel	nicles	1174	2.3	0.562	17.2	LOSC	3.0	75.2	0.97	1.41	27.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:57 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101v [8 Alt 6 2020 AM RAB]

Roundabout

∀ Site: 101v [8 Alt 6 2020 AM RAB]

Roundabout

Design Life Analysis (Capacity): Results for 3 years

Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range Ro	oad									
3	L2	280	2.3	0.545	1.7	LOS A	4.9	125.1	0.56	0.35	34.3
8	T1	252	2.3	0.545	1.7	LOS A	4.9	125.1	0.56	0.35	34.4
Appro	ach	532	2.3	0.545	1.7	LOS A	4.9	125.1	0.56	0.35	34.4
North:	Range Ro	ad									
4	T1	166	2.3	0.460	3.1	LOS A	3.3	85.2	0.68	0.55	35.2
14	R2	206	2.3	0.460	3.1	LOS A	3.3	85.2	0.68	0.55	34.3
Appro	ach	372	2.3	0.460	3.1	LOS A	3.3	85.2	0.68	0.55	34.7
West:	Minnesota	Park Road									
5	L2	120	2.3	0.295	1.6	LOS A	2.0	50.5	0.50	0.33	34.8
12	R2	150	2.3	0.295	1.6	LOS A	2.0	50.5	0.50	0.33	34.1
Appro	ach	270	2.3	0.295	1.6	LOS A	2.0	50.5	0.50	0.33	34.4
All Vel	nicles	1174	2.3	0.545	2.1	LOS A	4.9	125.1	0.58	0.41	34.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

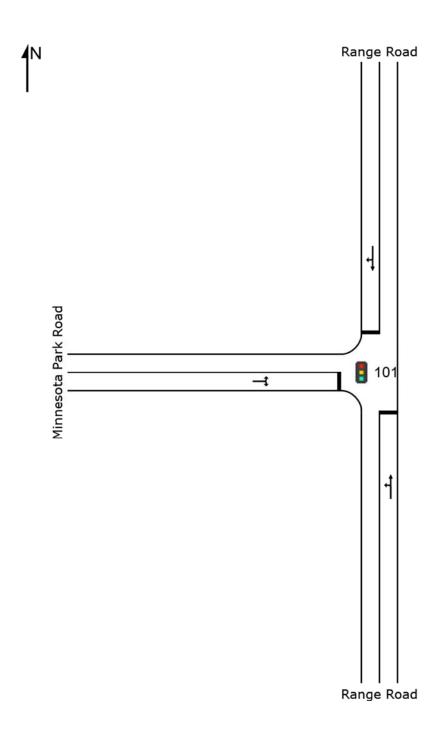
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:57 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [9 No Build 2040 AM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [9 No Build 2040 AM Signal]

New Site

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Final Year): Results for 23 years

Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range Ro	ad									
3	L2	379	2.3	1.068	65.1	LOS F ¹¹	33.1	841.6	1.00	1.34	16.3
8	T1	342	2.3	1.068	65.1	LOS F ¹¹	33.1	841.6	1.00	1.34	16.6
Appro	ach	721	2.3	1.068	65.1	LOS E ¹¹	33.1	841.6	1.00	1.34	16.4
North:	Range Ro	ad									
4	T1	226	2.3	1.111	89.4	LOS F ¹¹	26.3	670.8	1.00	1.38	14.0
14	R2	278	2.3	1.111	89.4	LOS F ¹¹	26.3	670.8	1.00	1.38	13.8
Appro	ach	504	2.3	1.111	89.4	LOS F ¹¹	26.3	670.8	1.00	1.38	13.9
West:	Minnesota	Park Road									
5	L2	162	2.3	0.810	25.5	LOS C	11.1	282.6	0.99	0.93	24.7
12	R2	203	2.3	0.810	25.5	LOS C	11.1	282.6	0.99	0.93	24.9
Appro	ach	366	2.3	0.810	25.5	LOS C	11.1	282.6	0.99	0.93	24.8
All Vel	nicles	1591	2.3	1.111	63.7	LOS E ¹¹	33.1	841.6	1.00	1.26	16.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

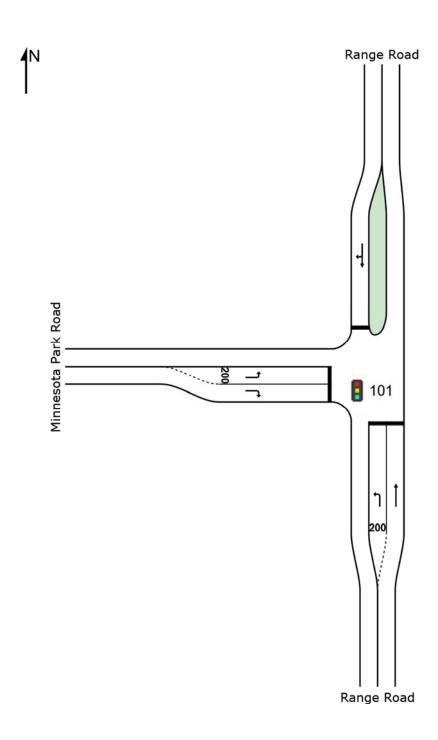
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:58 PM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [10 Alt 1 2040 AM Signal - w Turn Lane]

New Site Signals - Pretimed Isolated

Site: 101 [10 Alt 1 2040 AM Signal - w Turn Lane]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Capacity): Results for 23 years

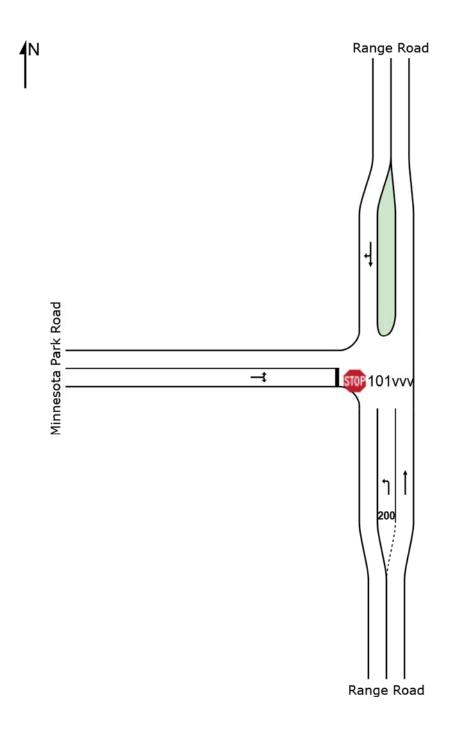
Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range Ro	oad									
3	L2	379	2.3	0.726	14.9	LOS B	7.8	198.1	0.94	0.83	28.2
8	T1	342	2.3	0.299	6.0	LOS A	5.4	138.4	0.50	0.43	36.1
Appro	ach	721	2.3	0.726	10.7	LOS B	7.8	198.1	0.74	0.64	31.5
North:	Range Ro	ad									
4	T1	226	2.3	0.829	24.0	LOS C	15.8	401.4	0.97	0.98	26.8
14	R2	278	2.3	0.829	24.0	LOS C	15.8	401.4	0.97	0.98	26.1
Appro	ach	504	2.3	0.829	24.0	LOS C	15.8	401.4	0.97	0.98	26.4
West:	Minnesota	Park Road									
5	L2	162	2.3	0.398	21.6	LOS C	4.6	116.3	0.89	0.72	25.8
12	R2	203	2.3	0.199	1.4	LOS A	1.6	40.3	0.31	0.26	34.0
Appro	ach	366	2.3	0.398	10.4	LOS B	4.6	116.3	0.57	0.47	29.8
All Vel	nicles	1591	2.3	0.829	14.8	LOS B	15.8	401.4	0.77	0.71	29.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:40:59 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (Two-Way)

New Site Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range R	oad									
3	L2	379	2.3	0.409	8.6	LOS A	2.4	61.3	0.61	0.66	30.5
8	T1	342	2.3	0.184	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	721	2.3	0.409	4.5	NA	2.4	61.3	0.32	0.35	34.4
North:	Range Re	oad									
4	T1	226	2.3	0.298	0.0	LOS A	0.0	0.0	0.00	0.00	37.7
14	R2	278	2.3	0.298	0.0	LOS A	0.0	0.0	0.00	0.00	36.3
Appro	ach	504	2.3	0.298	0.0	NA	0.0	0.0	0.00	0.00	36.9
West:	Minnesota	a Park Road									
5	L2	162	2.3	1.349	235.5	LOS F ¹¹	42.6	1085.1	1.00	2.73	7.9
12	R2	203	2.3	1.349	200.8	LOS F ¹¹	42.6	1085.1	1.00	2.73	7.9
Appro	ach	366	2.3	1.349	216.2	LOS F ¹¹	42.6	1085.1	1.00	2.73	7.9
All Vel	nicles	1591	2.3	1.349	51.8	NA	42.6	1085.1	0.38	0.78	19.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

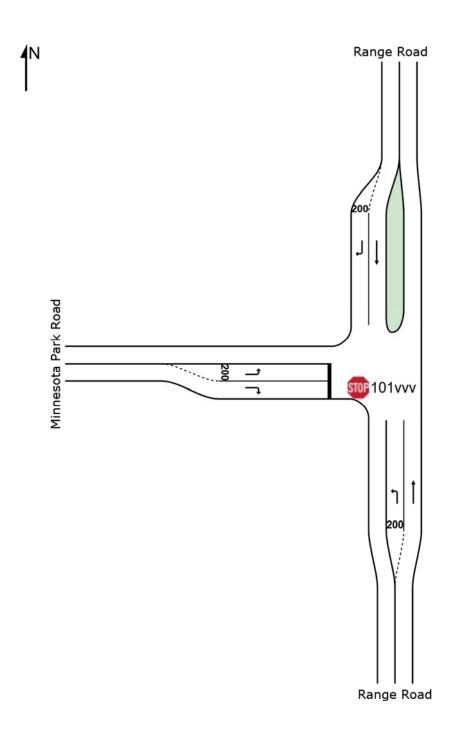
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:00 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101vvv [12 Alt 3 2040 AM TWS - w Turn Lanes]

New Site Stop (Two-Way)

🥶 Site: 101vvv [12 Alt 3 2040 AM TWS - w Turn Lanes]

New Site Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Range Road											
3	L2	379	2.3	0.392	8.1	LOS A	2.3	59.3	0.59	0.61	30.9
8	T1	342	2.3	0.184	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Approach		721	2.3	0.392	4.2	NA	2.3	59.3	0.31	0.32	34.6
North: Range Road											
4	T1	226	2.3	0.121	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
14	R2	278	2.3	0.177	0.0	LOS A	0.0	0.0	0.00	0.00	34.8
Approach		504	2.3	0.177	0.0	NA	0.0	0.0	0.00	0.00	37.0
West:	Minnesota	a Park Road									
5	L2	162	2.3	1.214	210.5	LOS F ¹¹	16.1	410.9	1.00	1.86	8.1
12	R2	203	2.3	0.279	11.8	LOS B	1.5	38.3	0.53	0.42	28.9
Approach		366	2.3	1.214	100.0	LOS F ¹¹	16.1	410.9	0.74	1.06	13.5
All Vehicles		1591	2.3	1.214	24.9	NA	16.1	410.9	0.31	0.39	25.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

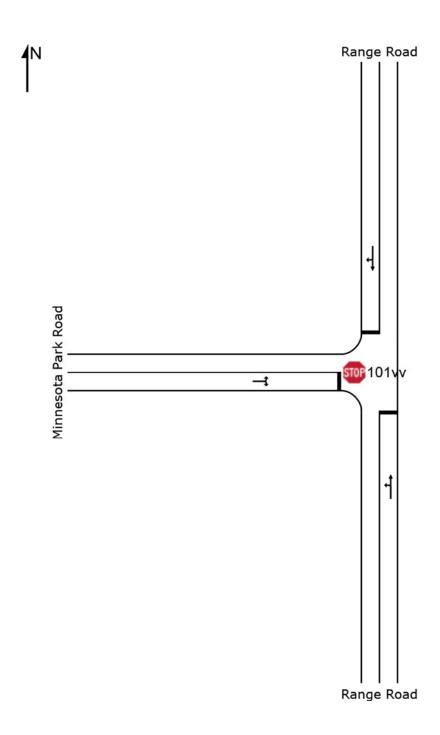
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:01 PM
Project: C:\Users\lamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

Site: 101vv [13 Alt 4 2040 AM AWS]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 23 years

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Range Road											
3	L2	379	2.3	0.802	21.1	LOS C	7.1	180.6	0.92	1.90	26.0
8	T1	342	2.3	0.802	21.1	LOS C	7.1	180.6	0.92	1.90	26.1
Approa	ach	721	2.3	0.802	21.1	LOS C	7.1	180.6	0.92	1.90	26.0
North: Range Road											
4	T1	226	2.3	0.845	33.5	LOS D	8.2	208.9	1.00	2.08	22.8
14	R2	278	2.3	0.845	33.5	LOS D	8.2	208.9	1.00	2.08	22.8
Approach		504	2.3	0.845	33.5	LOS D	8.2	208.9	1.00	2.08	22.8
West:	Minnesota	a Park Road									
5	L2	162	2.3	0.923	58.6	LOS F ¹¹	10.2	260.2	1.00	2.25	18.0
12	R2	203	2.3	0.923	58.6	LOS F ¹¹	10.2	260.2	1.00	2.25	18.1
Approa	ach	366	2.3	0.923	58.6	LOS F ¹¹	10.2	260.2	1.00	2.25	18.1
All Veh	nicles	1591	2.3	0.923	33.6	LOS D	10.2	260.2	0.96	2.04	22.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

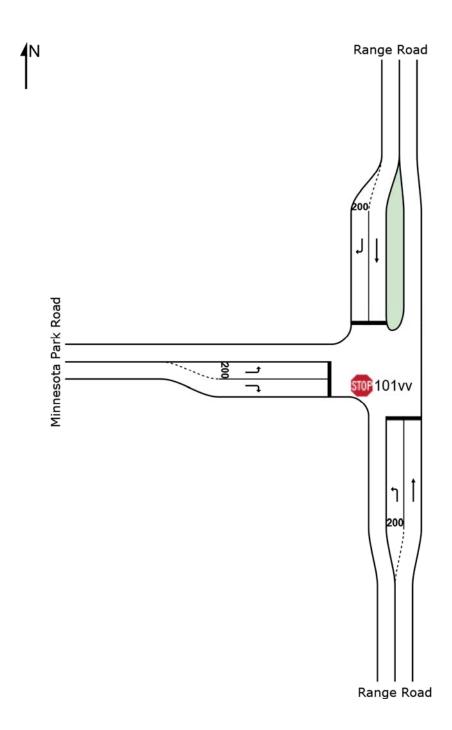
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:02 PM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

🥯 Site: 101vv [14 Alt 5 2040 AM AWS - w Turn Lanes]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 23 years

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	Range Ro	oad											
3	L2	379	2.3	0.730	23.1	LOS C	5.2	132.2	0.99	1.72	25.5		
8	T1	342	2.3	0.717	23.5	LOS C	4.9	125.5	1.00	1.70	25.4		
Appro	ach	721	2.3	0.730	23.3	LOS C	5.2	132.2	0.99	1.71	25.4		
North:	Range Ro	ad											
4	T1	226	2.3	0.687	29.1	LOS D	4.4	111.4	1.00	1.62	23.9		
14	R2	278	2.3	0.761	33.6	LOS D	5.6	143.5	1.00	1.76	22.8		
Appro	ach	504	2.3	0.761	31.6	LOS D	5.6	143.5	1.00	1.70	23.2		
West:	Minnesota	Park Road											
5	L2	162	2.3	0.585	25.8	LOS D	3.2	80.4	1.00	1.50	24.7		
12	R2	203	2.3	0.648	27.9	LOS D	3.9	98.2	1.00	1.57	24.2		
Appro	ach	366	2.3	0.648	27.0	LOS D	3.9	98.2	1.00	1.54	24.4		
All Vel	nicles	1591	2.3	0.761	26.8	LOS D	5.6	143.5	1.00	1.67	24.5		

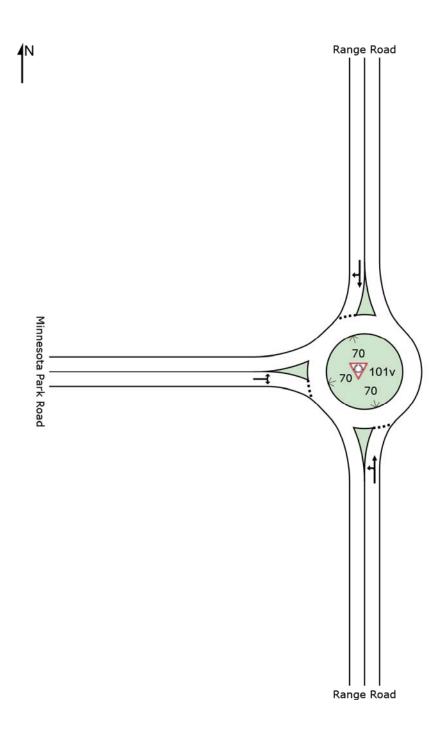
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:04 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

₩ Site: 101v [15 Alt 6 2040 AM RAB]

Roundabout

₩ Site: 101v [15 Alt 6 2040 AM RAB]

New Site Roundabout

Design Life Analysis (Capacity): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range R	oad									
3	L2	379	2.3	0.783	5.4	LOS A	12.2	310.0	0.91	0.70	32.8
8	T1	342	2.3	0.783	5.4	LOS A	12.2	310.0	0.91	0.70	32.9
Appro	ach	721	2.3	0.783	5.4	LOS A	12.2	310.0	0.91	0.70	32.9
North:	Range Ro	oad									
4	T1	226	2.3	0.720	9.5	LOS A	8.9	225.8	0.95	1.00	32.2
14	R2	278	2.3	0.720	9.5	LOS A	8.9	225.8	0.95	1.00	31.4
Appro	ach	504	2.3	0.720	9.5	LOS A	8.9	225.8	0.95	1.00	31.8
West:	Minnesota	a Park Road									
5	L2	162	2.3	0.436	2.5	LOS A	3.4	85.6	0.66	0.49	34.5
12	R2	203	2.3	0.436	2.5	LOS A	3.4	85.6	0.66	0.49	33.7
Appro	ach	366	2.3	0.436	2.5	LOS A	3.4	85.6	0.66	0.49	34.1
All Vel	nicles	1591	2.3	0.783	6.0	LOS A	12.2	310.0	0.86	0.75	32.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

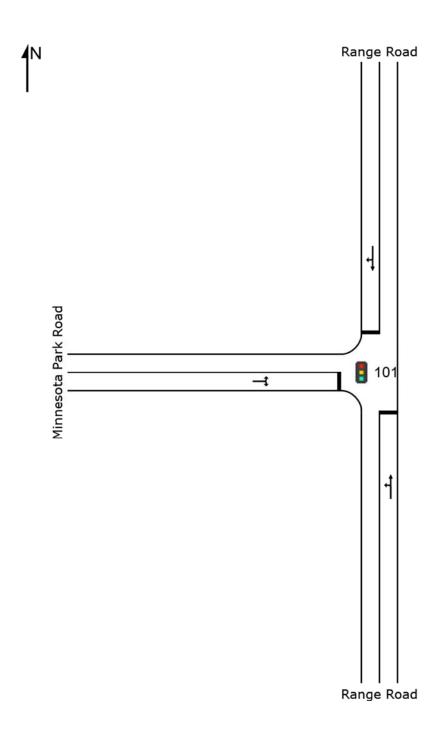
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:05 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [16 Exist 2017 PM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [16 Exist 2017 PM Signal]

Signals - Pretimed Isolated Cycle Time = 60 seconds (User-Given Phase Times)

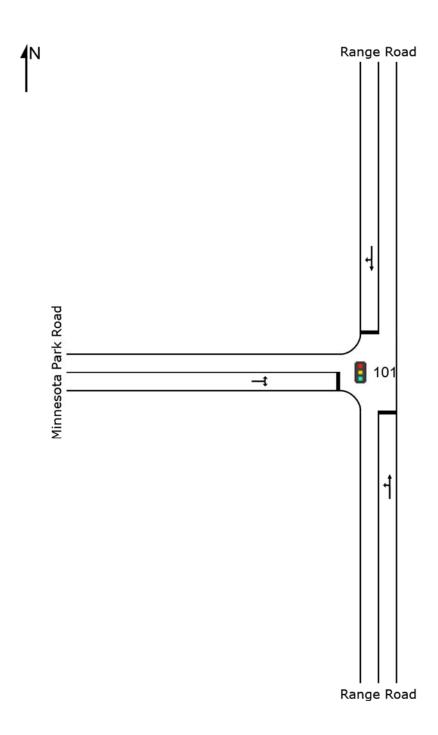
Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	Range Ro	oad											
3	L2	210	0.7	0.663	12.2	LOS B	7.6	189.9	0.84	0.77	30.2		
8	T1	205	0.7	0.663	12.2	LOS B	7.6	189.9	0.84	0.77	31.4		
Approa	ach	415	0.7	0.663	12.2	LOS B	7.6	189.9	0.84	0.77	30.8		
North:	Range Ro	ad											
4	T1	230	0.7	0.488	9.7	LOS A	7.4	185.9	0.76	0.66	32.8		
14	R2	147	0.7	0.488	9.7	LOS A	7.4	185.9	0.76	0.66	31.8		
Approa	ach	377	0.7	0.488	9.7	LOS A	7.4	185.9	0.76	0.66	32.4		
West:	Minnesota	Park Road											
5	L2	163	0.7	0.650	15.9	LOS B	7.4	187.1	0.93	0.80	27.7		
12	R2	148	0.7	0.650	15.9	LOS B	7.4	187.1	0.93	0.80	27.9		
Approa	ach	311	0.7	0.650	15.9	LOS B	7.4	187.1	0.93	0.80	27.8		
All Veh	nicles	1103	0.7	0.663	12.4	LOS B	7.6	189.9	0.84	0.74	30.4		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:05 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [17 No Build 2020 PM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [17 No Build 2020 PM Signal]

Design Life Analysis (Practical Capacity): Results for 3 years

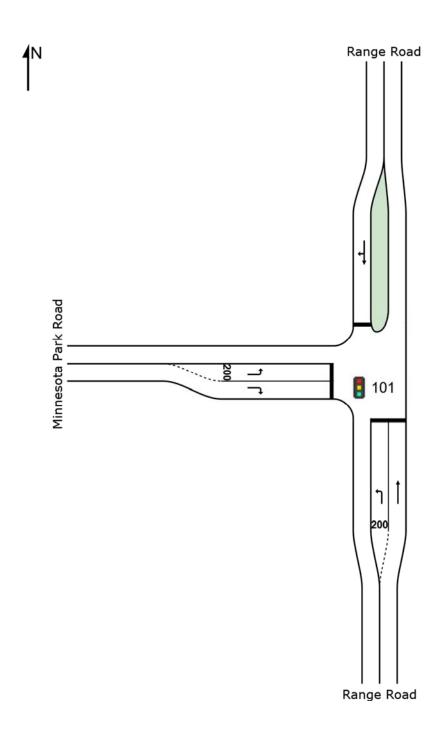
Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South	: Range Ro	oad											
3	L2	220	0.7	0.716	14.8	LOS B	8.3	207.4	0.89	0.85	29.2		
8	T1	215	0.7	0.716	14.8	LOS B	8.3	207.4	0.89	0.85	30.3		
Appro	ach	435	0.7	0.716	14.8	LOS B	8.3	207.4	0.89	0.85	29.7		
North:	Range Ro	ad											
4	T1	241	0.7	0.568	12.0	LOS B	8.7	217.5	0.82	0.72	31.8		
14	R2	154	0.7	0.568	12.0	LOS B	8.7	217.5	0.82	0.72	30.8		
Appro	ach	395	0.7	0.568	12.0	LOS B	8.7	217.5	0.82	0.72	31.4		
West:	Minnesota	Park Road											
5	L2	171	0.7	0.680	17.3	LOS B	8.1	202.9	0.94	0.83	27.3		
12	R2	155	0.7	0.680	17.3	LOS B	8.1	202.9	0.94	0.83	27.4		
Appro	ach	325	0.7	0.680	17.3	LOS B	8.1	202.9	0.94	0.83	27.3		
All Vel	nicles	1155	0.7	0.716	14.5	LOS B	8.7	217.5	0.88	0.80	29.5		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:06 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [18 Alt 1 2020 PM Signal w Turn Lane]

New Site Signals - Pretimed Isolated

Site: 101 [18 Alt 1 2020 PM Signal w Turn Lane]

Signals - Pretimed Isolated Cycle Time = 60 seconds (User-Given Phase Times)

Design Life Analysis (Practical Capacity): Results for 3 years

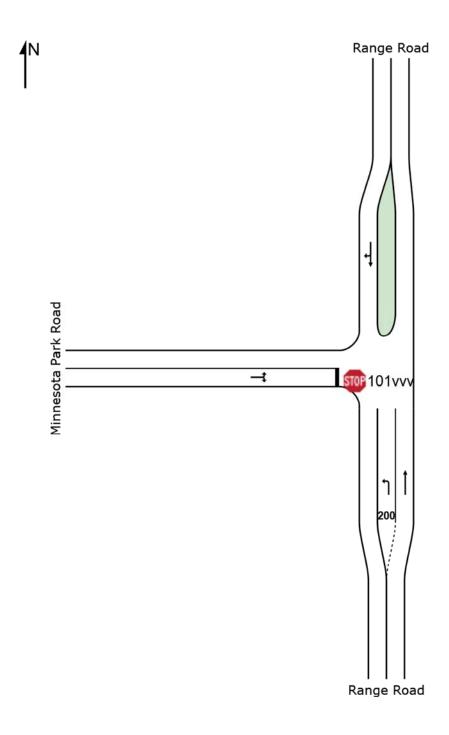
Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South	: Range Ro	oad											
3	L2	220	0.7	0.456	8.4	LOS A	3.5	88.7	0.80	0.65	30.8		
8	T1	215	0.7	0.195	5.9	LOS A	3.1	78.3	0.50	0.42	36.1		
Appro	ach	435	0.7	0.456	7.2	LOS A	3.5	88.7	0.65	0.54	33.2		
North:	Range Ro	ad											
4	T1	241	0.7	0.546	10.6	LOS B	8.2	206.0	0.79	0.69	32.4		
14	R2	154	0.7	0.546	10.6	LOS B	8.2	206.0	0.79	0.69	31.4		
Appro	ach	395	0.7	0.546	10.6	LOS B	8.2	206.0	0.79	0.69	32.0		
West:	Minnesota	Park Road											
5	L2	171	0.7	0.380	19.0	LOS B	4.3	108.9	0.87	0.71	26.7		
12	R2	155	0.7	0.152	1.2	LOS A	1.1	26.5	0.30	0.25	34.2		
Appro	ach	325	0.7	0.380	10.6	LOS B	4.3	108.9	0.60	0.49	29.8		
All Vel	nicles	1155	0.7	0.546	9.3	LOS A	8.2	206.0	0.68	0.58	31.8		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:07 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (Two-Way)

🥯 Site: 101vvv [19 Alt 2 2020 PM TWS]

New Site Stop (Two-Way)

Design Life Analysis (Capacity): Results for 3 years

Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	Range Ro	oad									
3	L2	220	0.7	0.200	5.1	LOS A	0.9	21.7	0.47	0.39	32.1
8	T1	215	0.7	0.114	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	435	0.7	0.200	2.6	NA	0.9	21.7	0.24	0.19	35.6
North:	Range Ro	ad									
4	T1	241	0.7	0.224	0.0	LOS A	0.0	0.0	0.00	0.00	38.4
14	R2	154	0.7	0.224	0.0	LOS A	0.0	0.0	0.00	0.00	37.0
Appro	ach	395	0.7	0.224	0.0	NA	0.0	0.0	0.00	0.00	37.8
West:	Minnesota	Park Road									
5	L2	171	0.7	0.761	44.3	LOS E ¹¹	8.0	200.7	0.75	1.05	22.1
12	R2	155	0.7	0.761	26.2	LOS D	8.0	200.7	0.75	1.05	22.2
Appro	ach	325	0.7	0.761	35.7	LOS E ¹¹	8.0	200.7	0.75	1.05	22.1
All Vel	nicles	1155	0.7	0.761	11.0	NA	8.0	200.7	0.30	0.37	30.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

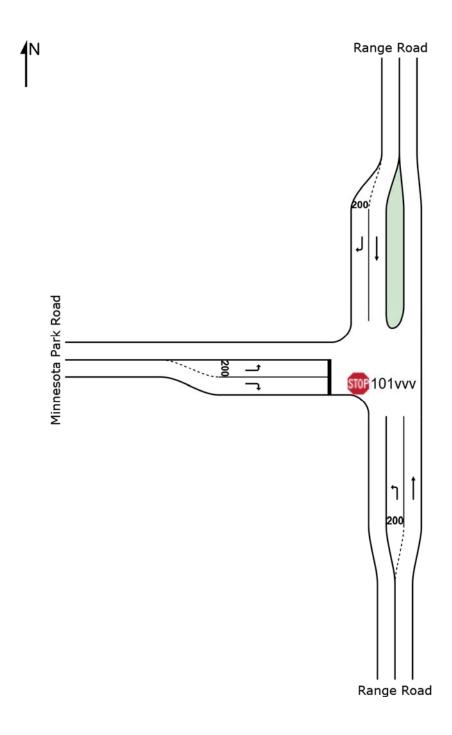
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:08 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101vvv [20 Alt 3 2020 PM TWS - w Turn Lane]

New Site Stop (Two-Way)

🥶 Site: 101vvv [20 Alt 3 2020 PM TWS - w Turn Lane]

New Site Stop (Two-Way)

Design Life Analysis (Capacity): Results for 3 years

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	: Range Ro	oad											
3	L2	220	0.7	0.196	5.0	LOS A	0.9	21.7	0.47	0.37	32.3		
8	T1	215	0.7	0.114	0.0	LOS A	0.0	0.0	0.00	0.00	40.0		
Appro	ach	435	0.7	0.196	2.5	NA	0.9	21.7	0.24	0.19	35.7		
North:	Range Ro	ad											
4	T1	241	0.7	0.128	0.0	LOS A	0.0	0.0	0.00	0.00	40.0		
14	R2	154	0.7	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	34.9		
Appro	ach	395	0.7	0.128	0.0	NA	0.0	0.0	0.00	0.00	37.8		
West:	Minnesota	Park Road											
5	L2	171	0.7	0.578	32.6	LOS D	3.5	87.6	0.85	1.02	22.9		
12	R2	155	0.7	0.212	11.3	LOS B	1.1	27.2	0.52	0.40	29.2		
Appro	ach	325	0.7	0.578	22.5	LOS C	3.5	87.6	0.69	0.72	25.5		
All Vel	nicles	1155	0.7	0.578	7.3	NA	3.5	87.6	0.28	0.27	32.7		

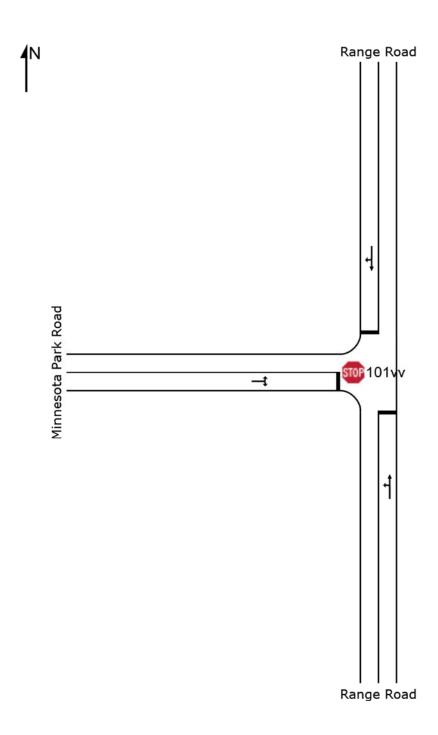
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:09 PM
Project: C:\Users\lamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

🦥 Site: 101vv [21 Alt 4 2020 PM AWS]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 3 years

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	: Range Ro	oad											
3	L2	220	0.7	0.562	13.5	LOS B	2.9	71.9	0.83	1.32	28.5		
8	T1	215	0.7	0.562	13.5	LOS B	2.9	71.9	0.83	1.32	28.6		
Appro	ach	435	0.7	0.562	13.5	LOS B	2.9	71.9	0.83	1.32	28.6		
North:	Range Ro	ad											
4	T1	241	0.7	0.737	26.3	LOS D	5.3	134.2	0.99	1.74	24.6		
14	R2	154	0.7	0.737	26.3	LOS D	5.3	134.2	0.99	1.74	24.7		
Appro	ach	395	0.7	0.737	26.3	LOS D	5.3	134.2	0.99	1.74	24.6		
West:	Minnesota	Park Road											
5	L2	171	0.7	0.716	28.4	LOS D	4.9	123.2	1.00	1.69	23.9		
12	R2	155	0.7	0.716	28.4	LOS D	4.9	123.2	1.00	1.69	24.1		
Appro	ach	325	0.7	0.716	28.4	LOS D	4.9	123.2	1.00	1.69	24.0		
All Vel	nicles	1155	0.7	0.737	22.1	LOS C	5.3	134.2	0.93	1.57	25.8		

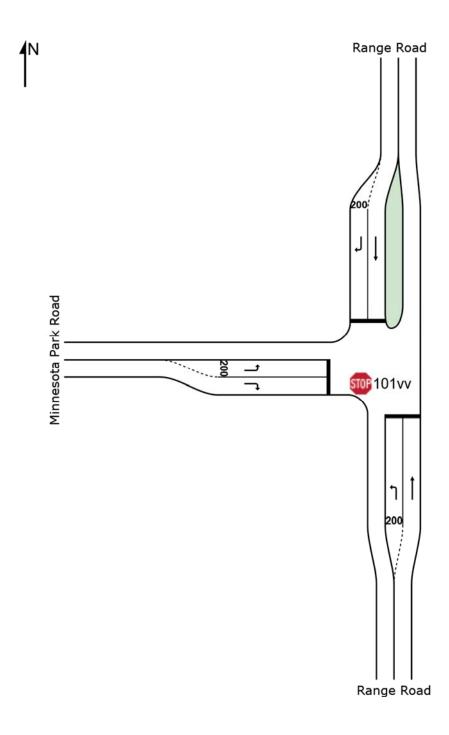
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:09 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101vv [22 Alt 5 2020 PM AWS - w Turn Lane]

New Site Stop (All-Way)

🥶 Site: 101vv [22 Alt 5 2020 PM AWS - w Turn Lane]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 3 years

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph	
South:	: Range Ro	oad										
3	L2	220	0.7	0.480	14.2	LOS B	2.2	56.5	0.93	1.35	28.4	
8	T1	215	0.7	0.518	16.1	LOS C	2.6	64.4	0.96	1.41	27.8	
Appro	ach	435	0.7	0.518	15.1	LOS C	2.6	64.4	0.95	1.38	28.1	
North:	Range Ro	ad										
4	T1	241	0.7	0.723	32.3	LOS D	4.9	123.5	1.00	1.68	23.1	
14	R2	154	0.7	0.511	20.5	LOS C	2.5	63.1	1.00	1.43	26.3	
Appro	ach	395	0.7	0.723	27.7	LOS D	4.9	123.5	1.00	1.58	24.3	
West:	Minnesota	Park Road										
5	L2	171	0.7	0.494	18.3	LOS C	2.4	59.8	0.98	1.41	27.0	
12	R2	155	0.7	0.502	19.7	LOS C	2.4	61.4	1.00	1.42	26.6	
Appro	ach	325	0.7	0.502	19.0	LOS C	2.4	61.4	0.99	1.41	26.8	
All Vel	nicles	1155	0.7	0.723	20.5	LOS C	4.9	123.5	0.98	1.46	26.3	

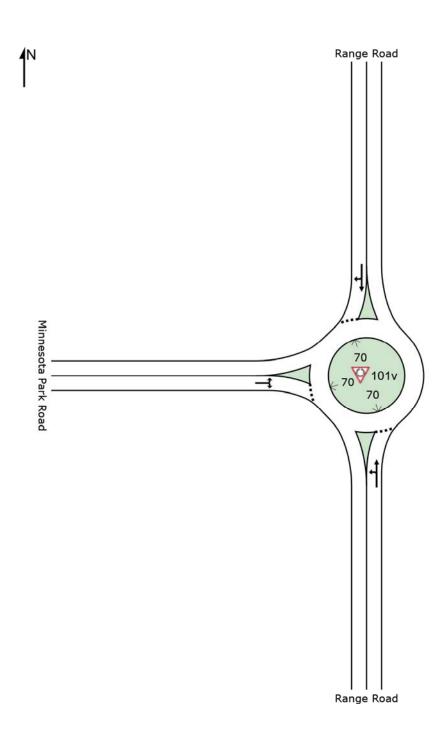
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:10 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

₩ Site: 101v [23 Alt 6 2020 PM RAB]

Roundabout

₩ Site: 101v [23 Alt 6 2020 PM RAB]

Roundabout

Design Life Analysis (Capacity): Results for 3 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range R	oad									
3	L2	220	0.7	0.465	2.0	LOS A	3.7	92.7	0.58	0.40	34.3
8	T1	215	0.7	0.465	2.0	LOS A	3.7	92.7	0.58	0.40	34.4
Appro	ach	435	0.7	0.465	2.0	LOS A	3.7	92.7	0.58	0.40	34.4
North:	Range Ro	oad									
4	T1	241	0.7	0.446	2.4	LOS A	3.3	84.0	0.62	0.46	35.4
14	R2	154	0.7	0.446	2.4	LOS A	3.3	84.0	0.62	0.46	34.6
Appro	ach	395	0.7	0.446	2.4	LOS A	3.3	84.0	0.62	0.46	35.1
West:	Minnesota	a Park Road									
5	L2	171	0.7	0.378	2.4	LOS A	2.6	66.3	0.60	0.45	34.4
12	R2	155	0.7	0.378	2.4	LOS A	2.6	66.3	0.60	0.45	33.7
Appro	ach	325	0.7	0.378	2.4	LOS A	2.6	66.3	0.60	0.45	34.1
All Vel	nicles	1155	0.7	0.465	2.2	LOS A	3.7	92.7	0.60	0.43	34.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

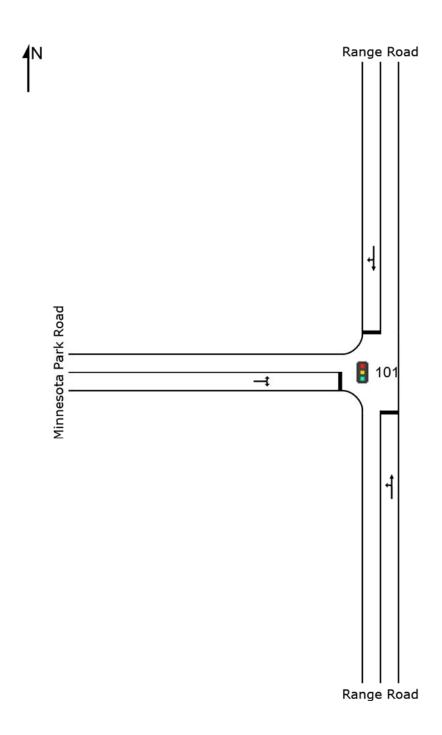
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:11 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [24 No Build 2040 PM Signal]

New Site Signals - Pretimed Isolated

Site: 101 [24 No Build 2040 PM Signal]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Final Year): Results for 23 years

Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph	
South	Range Ro		70	• • • • • • • • • • • • • • • • • • •			VOII			per veri	Шрп	
3	L2	297	0.7	1.076	71.8	LOS F ¹¹	26.5	667.3	1.00	1.32	15.3	
8	T1	291	0.7	1.076	71.8	LOS F ¹¹	26.5	667.3	1.00	1.32	15.6	
Appro	ach	589	0.7	1.076	71.8	LOS E ¹¹	26.5	667.3	1.00	1.32	15.4	
North:	Range Ro	ad										
4	T1	327	0.7	0.938	42.4	LOS D	21.7	545.3	1.00	1.17	22.1	
14	R2	208	0.7	0.938	42.4	LOS D	21.7	545.3	1.00	1.17	21.7	
Appro	ach	535	0.7	0.938	42.4	LOS D	21.7	545.3	1.00	1.17	21.9	
West:	Minnesota	Park Road										
5	L2	231	0.7	0.998	62.5	LOS E ¹¹	20.1	504.7	1.00	1.15	17.5	
12	R2	210	0.7	0.998	62.5	LOS E ¹¹	20.1	504.7	1.00	1.15	17.6	
Appro	ach	441	0.7	0.998	62.5	LOS E ¹¹	20.1	504.7	1.00	1.15	17.5	
All Vel	nicles	1564	0.7	1.076	59.1	LOS E ¹¹	26.5	667.3	1.00	1.22	17.8	

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

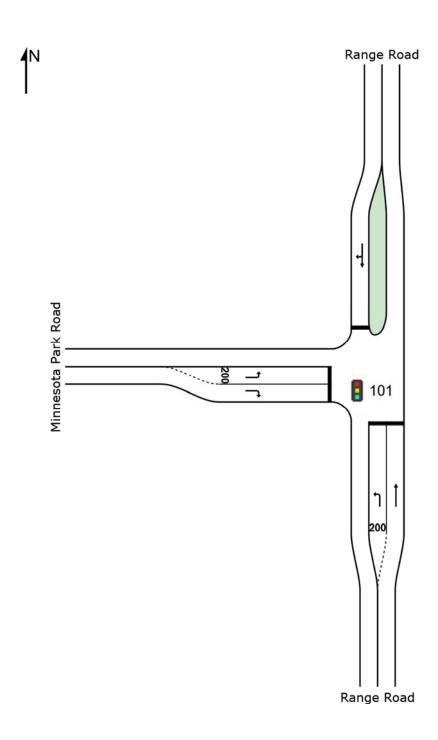
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:12 PM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101 [25 Alt 1 2040 PM Signal w Turn Lane]

New Site Signals - Pretimed Isolated

Site: 101 [25 Alt 1 2040 PM Signal w Turn Lane]

Signals - Pretimed Isolated Cycle Time = 65 seconds (User-Given Phase Times)

Design Life Analysis (Practical Capacity): Results for 23 years

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph		
South:	: Range Ro	oad											
3	L2	297	0.7	0.618	12.1	LOS B	5.4	136.4	0.92	0.77	29.3		
8	T1	291	0.7	0.251	5.8	LOS A	4.5	112.0	0.48	0.41	36.2		
Appro	ach	589	0.7	0.618	9.0	LOS A	5.4	136.4	0.70	0.59	32.3		
North:	Range Ro	ad											
4	T1	327	0.7	0.830	25.1	LOS C	17.7	444.9	0.97	0.99	26.8		
14	R2	208	0.7	0.830	25.1	LOS C	17.7	444.9	0.97	0.99	26.1		
Appro	ach	535	0.7	0.830	25.1	LOSC	17.7	444.9	0.97	0.99	26.5		
West:	Minnesota	Park Road											
5	L2	231	0.7	0.558	23.5	LOS C	7.0	175.9	0.93	0.77	25.3		
12	R2	210	0.7	0.219	2.1	LOS A	2.0	50.4	0.37	0.31	33.7		
Appro	ach	441	0.7	0.558	13.3	LOS B	7.0	175.9	0.66	0.55	28.7		
All Vel	nicles	1564	0.7	0.830	15.7	LOS B	17.7	444.9	0.78	0.72	29.1		

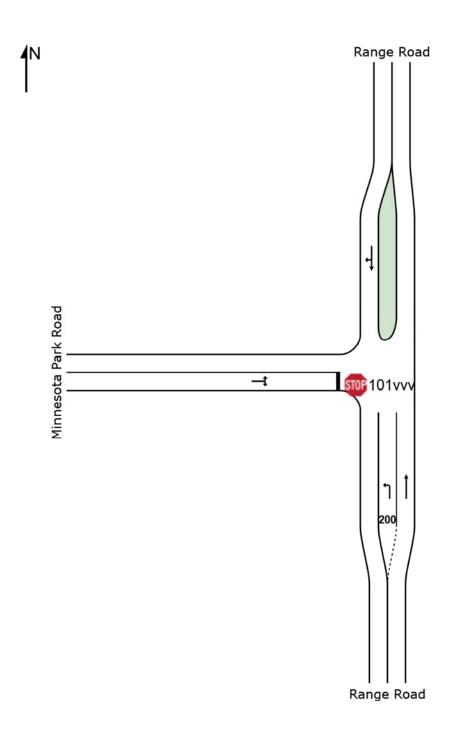
Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Wednesday, June 28, 2017 11:13:09 AM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (Two-Way)

New Site Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	: Range R	oad									
3	L2	297	0.7	0.322	7.4	LOS A	1.6	40.1	0.58	0.59	31.1
8	T1	291	0.7	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	589	0.7	0.322	3.7	NA	1.6	40.1	0.30	0.30	34.9
North:	Range Ro	oad									
4	T1	327	0.7	0.303	0.0	LOS A	0.0	0.0	0.00	0.00	38.3
14	R2	208	0.7	0.303	0.0	LOS A	0.0	0.0	0.00	0.00	37.0
Appro	ach	535	0.7	0.303	0.0	NA	0.0	0.0	0.00	0.00	37.8
West:	Minnesota	a Park Road									
5	L2	231	0.7	1.597	330.4	LOS F ¹¹	63.2	1587.6	1.00	3.52	5.8
12	R2	210	0.7	1.597	304.3	LOS F ¹¹	63.2	1587.6	1.00	3.52	5.8
Appro	ach	441	0.7	1.597	318.0	LOS F ¹¹	63.2	1587.6	1.00	3.52	5.8
All Vel	nicles	1564	0.7	1.597	91.0	NA	63.2	1587.6	0.39	1.10	14.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

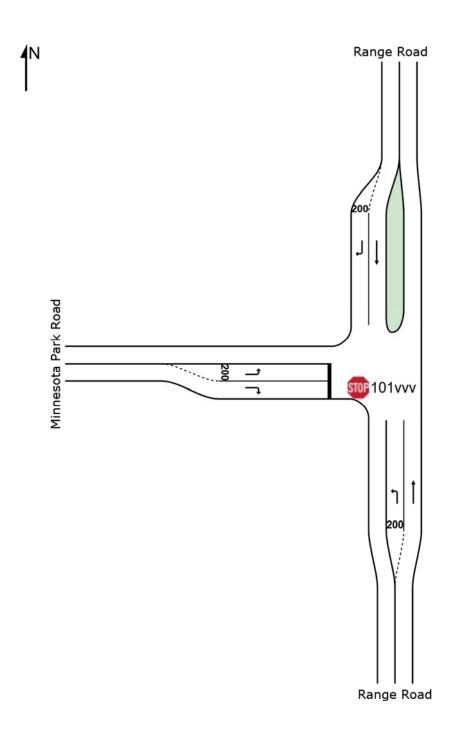
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:14 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Site: 101vvv [27 Alt 3 2040 PM TWS - w Turn Lane]

New Site Stop (Two-Way)

🚥 Site: 101vvv [27 Alt 3 2040 PM TWS - w Turn Lane]

New Site Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	: Range R	oad									
3	L2	297	0.7	0.309	7.0	LOS A	1.5	38.5	0.57	0.55	31.4
8	T1	291	0.7	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Appro	ach	589	0.7	0.309	3.5	NA	1.5	38.5	0.29	0.28	35.1
North:	Range Ro	oad									
4	T1	327	0.7	0.173	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
14	R2	208	0.7	0.130	0.0	LOS A	0.0	0.0	0.00	0.00	34.9
Appro	ach	535	0.7	0.173	0.0	NA	0.0	0.0	0.00	0.00	37.8
West:	Minnesota	a Park Road									
5	L2	231	0.7	1.329	233.6	LOS F ¹¹	26.0	652.4	1.00	2.26	7.4
12	R2	210	0.7	0.339	13.8	LOS B	2.0	50.7	0.63	0.61	28.3
Appro	ach	441	0.7	1.329	129.0	LOS F ¹¹	26.0	652.4	0.83	1.48	11.5
All Vel	nicles	1564	0.7	1.329	37.7	NA	26.0	652.4	0.34	0.52	22.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

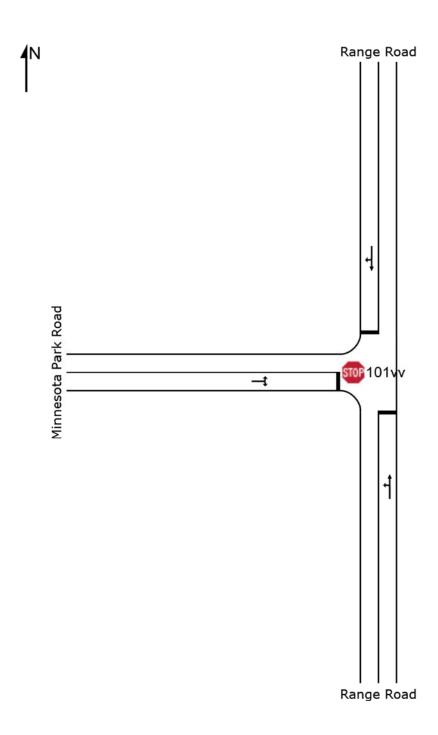
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:15 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

Site: 101vv [28 Alt 4 2040 PM AWS]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	: Range R	oad									
3	L2	297	0.7	0.761	20.9	LOS C	5.9	149.2	0.93	1.77	26.1
8	T1	291	0.7	0.761	20.9	LOS C	5.9	149.2	0.93	1.77	26.2
Appro	ach	589	0.7	0.761	20.9	LOS C	5.9	149.2	0.93	1.77	26.1
North:	Range Ro	oad									
4	T1	327	0.7	0.999	64.5	LOS F ¹¹	15.5	388.6	1.00	2.82	17.3
14	R2	208	0.7	0.999	64.5	LOS F ¹¹	15.5	388.6	1.00	2.82	17.3
Appro	ach	535	0.7	0.999	64.5	LOS F ¹¹	15.5	388.6	1.00	2.82	17.3
West:	Minnesota	a Park Road									
5	L2	231	0.7	0.969	63.2	LOS F ¹¹	12.8	322.0	1.00	2.52	17.4
12	R2	210	0.7	0.969	63.2	LOS F ¹¹	12.8	322.0	1.00	2.52	17.5
Appro	ach	441	0.7	0.969	63.2	LOS F ¹¹	12.8	322.0	1.00	2.52	17.4
All Vel	nicles	1564	0.7	0.999	47.7	LOS E ¹¹	15.5	388.6	0.97	2.34	19.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

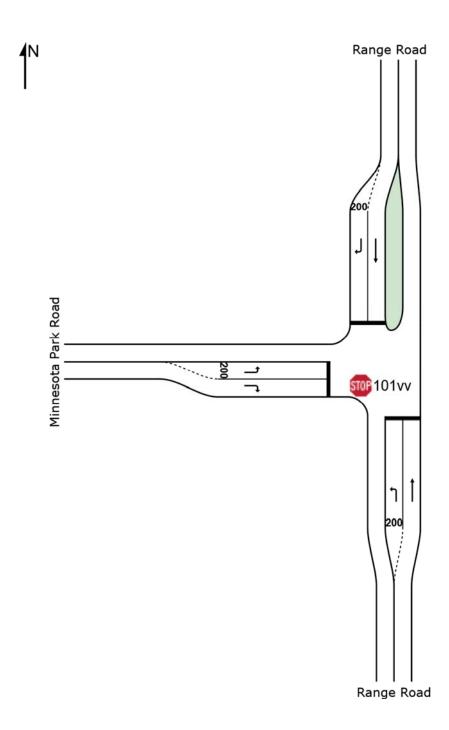
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:16 PM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

New Site Stop (All-Way)

🥶 Site: 101vv [29 Alt 5 2040 PM AWS - w Turn Lane]

New Site Stop (All-Way)

Design Life Analysis (Capacity): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Range R	oad									
3	L2	297	0.7	0.650	20.6	LOS C	3.9	98.7	0.98	1.57	26.3
8	T1	291	0.7	0.702	25.1	LOS D	4.7	117.1	1.00	1.66	25.0
Appro	ach	589	0.7	0.702	22.8	LOS C	4.7	117.1	0.99	1.62	25.6
North:	Range Ro	oad									
4	T1	327	0.7	0.979	73.0	LOS F ¹¹	11.8	295.8	1.00	2.36	16.2
14	R2	208	0.7	0.692	31.7	LOS D	4.4	111.0	1.00	1.62	23.2
Appro	ach	535	0.7	0.979	56.9	LOS F ¹¹	11.8	295.8	1.00	2.07	18.4
West:	Minnesota	a Park Road									
5	L2	231	0.7	0.670	27.3	LOS D	4.2	104.4	1.00	1.60	24.3
12	R2	210	0.7	0.680	30.1	LOS D	4.3	107.3	1.00	1.61	23.6
Appro	ach	441	0.7	0.680	28.6	LOS D	4.3	107.3	1.00	1.60	24.0
All Vel	nicles	1564	0.7	0.979	36.1	LOS E ¹¹	11.8	295.8	1.00	1.77	22.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

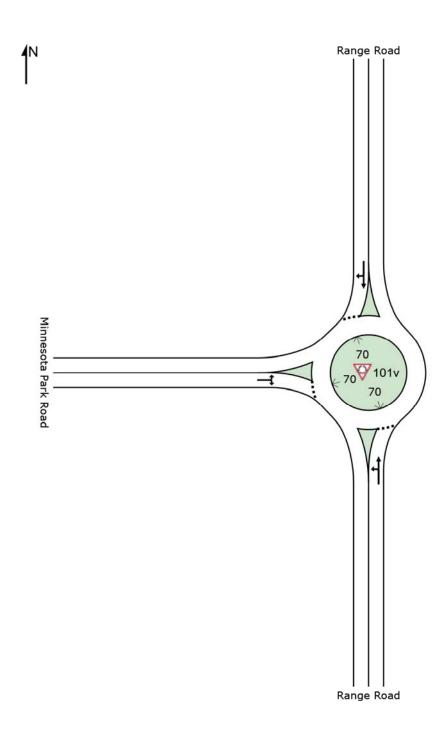
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:17 PM

Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

₩ Site: 101v [30 Alt 6 2040 PM RAB]

New Site Roundabout

₩ Site: 101v [30 Alt 6 2040 PM RAB]

New Site Roundabout

Design Life Analysis (Capacity): Results for 23 years

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: Range R	oad									
3	L2	297	0.7	0.609	2.9	LOS A	5.9	149.0	0.75	0.57	33.8
8	T1	291	0.7	0.609	2.9	LOS A	5.9	149.0	0.75	0.57	33.9
Appro	ach	589	0.7	0.609	2.9	LOS A	5.9	149.0	0.75	0.57	33.9
North:	Range Ro	oad									
4	T1	327	0.7	0.593	3.9	LOS A	5.7	143.3	0.78	0.66	34.8
14	R2	208	0.7	0.593	3.9	LOS A	5.7	143.3	0.78	0.66	34.0
Appro	ach	535	0.7	0.593	3.9	LOS A	5.7	143.3	0.78	0.66	34.5
West:	Minnesota	a Park Road									
5	L2	231	0.7	0.505	3.2	LOS A	4.1	102.2	0.75	0.61	34.0
12	R2	210	0.7	0.505	3.2	LOS A	4.1	102.2	0.75	0.61	33.3
Appro	ach	441	0.7	0.505	3.2	LOS A	4.1	102.2	0.75	0.61	33.7
All Vel	hicles	1564	0.7	0.609	3.3	LOS A	5.9	149.0	0.76	0.61	34.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: VECTURA CONSULTING SERVICES, L.L.C. | Processed: Monday, June 26, 2017 5:41:18 PM
Project: C:\Users\llamb27\Dropbox\Projects\0030 RPC Minnesota Park (RCL)\Submittal\SUBMITTAL 4 06-26-17\Electronic Files\Sidra\Minnesota Park.sip7

Appendix E: Crash Data

YEAR 2013 Crash Data for Minnesota Park Road Improvements Stage 0 Traffic Study

					_	lammor	Hammond, Louisiana						
ΙD	ID Location	Latitude	Longitude	Property Damage	Fatality Injury	Injury	Number of Fatality	Number of Injury	Crash Date	Manner of Collision	Weather Hour Alcohol	Hour	Alcohol
1	Intersection 30.484684	30.484684	-90.448315	1	0	0	0	0	12/20/13	rear end	dry	12	No
2	Intersection	30.484684	-90.448316	1	0	0	0	0	12/31/13	rear end	wet	22	No
7	Segment 2	30.485305	-90.448306	1	0	0	0	0	06/27/13	non collision with motor	۸Jp	20	N O N
)								•	vehicle	•		
1	Segment 3	30.483534	-90.44831	1	0	0	0	0	04/13/13	rear end	dry	20	No
2	Segment 3	30.484134	-90.448313	1	0	0	0	0	08/23/13	left turn	dry	13	No
										opposite dir			

Source: Regional Planning Commission

This document is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409.

YEAR 2014 Crash Data for Minnesota Park Road Improvements Stage 0 Traffic Study

₽

2

က

Alcohol

2 2

2 2

å

S

õ

2222

å

Hour 16 16 19 18 24 13 13 20 12 21 11 ∞ Weather dry dгу drу dгу wet dгу dry dr√ dry dгу dry dгу Sideswipe Manner left turn same dir opposite rear end rear end Direction rear end rear end rear end Collision rear end rear end left turn rear end Same other o **Crash Date** 10/10/14 11/14/14 02/10/14 04/30/14 08/09/14 10/02/14 11/22/14 01/23/14 03/28/14 05/28/14 12/12/14 11/14/14 of Injury Number 0 0 0 0 0 0 0 0 0 0 0 0 of Fatality Number 0 0 0 0 0 0 0 0 0 0 0 0 Hammond, Louisiana Injury \circ 0 0 0 0 0 0 0 0 0 0 Fatality \circ 0 0 0 0 0 0 0 0 0 0 Property Damage ⊣ \vdash ⊣ \vdash ⊣ -90.448315 -90.448315 -90.448346 -90.448505 -90.448346 -90.448442 -90.448314 -90.448346 -90.448378 -90.448518 -90.454764 Longitude -90.44841 30.484683 30.484684 30.484684 30.484629 30.484684 30.484684 30.484683 30.484684 30.484657 30.484657 30.48481 Latitude Intersection Segment 1 Location

4 7 9

This document is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409.

Source: Regional Planning Commission

5 5

ထြ

/

YEAR 2015 Crash Data for Minnesota Park Road Improvements Stage 0 Traffic Study

Location Latitude Longitude Damage Dam						_	Hammor	Hammond, Louisiana						
Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484725 -90.448313 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448316 1 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 Segment 1 30.484691 -90.448316 1 0 0 0 0 Segment 1 30.484677 -90.451816 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677	Q	Location	Latitude	Longitude	Property Damage	Fatality	Injury	Number of Fatality	Number of Injury	Crash Date	Manner of Collision	Weather	Hour	Alcohol
Intersection 30.484272 -90.448313 1 0 0 0 0 Intersection 30.484725 -90.448314 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 Intersection 30.484684 -90.448476 1 0 0 0 0 Segment 1 30.484676 -90.451816 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677	1	Intersection	30.484657	-90.448315	1	0	0	0	0	01/07/15	rear end	dry	17	No
Intersection 30.484725 -90.448314 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 Segment 1 30.484676 -90.451816 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677	2	Intersection	30.484272	-90.448313	1	0	0	0	0	01/26/15	rear end	dry	19	No
Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484684 -90.448316 1 0 0 0 0 0 Intersection 30.484691 -90.448476 1 0 0 0 0 0 Segment 1 30.484677 -90.450890 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0	3	Intersection	30.484725	-90.448314	1	0	0	0	0	01/29/15	rear end	dry	7	No
Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 Intersection 30.484657 -90.448318 1 0 0 0 0 Intersection 30.484684 -90.448318 1 0 0 0 0 Segment 1 30.484691 -90.451816 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0	4	Intersection	30.484657	-90.448315	1	0	0	0	0	02/25/15	rear end	wet	16	No
Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484684 -90.448476 1 0 0 0 0 0 Segment 1 30.484676 -90.451816 1 0 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0	2	Intersection	30.484657	-90.448315	1	0	0	0	0	03/16/15	rear end	dry	15	No
Intersection 30.484657 -90.448315 1 0 0 0 0 0 Intersection 30.484684 -90.448318 1 0 0 0 0 Segment 1 30.484691 -90.451816 1 0 0 0 0 Segment 1 30.484677 -90.45099 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0	9	Intersection	30.484657	-90.448315	1	0	0	0	0	03/31/15	left turn angle	dry	15	No
Intersection 30.484684 -90.448318 1 0 0 0 0 0 Intersection 30.484683 -90.448476 1 0 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 0 Segment 1 30.484677 -90.449990 1 0 0 0 Segment 1 30.484673 -90.449990 1 0 0 0	7	Intersection	30.484657	-90.448315	1	0	0	0	0	08/09/15	rear end	wet	18	No
Intersection 30.484683 -90.448476 1 0 0 0 10/27/15 Segment 1 30.484691 -90.451816 1 0 0 0 0 03/02/15 Segment 1 30.484677 -90.449990 1 0 0 0 0 0 0/03/15 Segment 1 30.484677 -90.449990 1 0 0 0 0 0 0/03/15 Segment 1 30.484673 -90.449990 1 0 0 0 0 0/03/15	8	Intersection	30.484684	-90.448318	1	0	0	0	0	10/23/15	left turn opp dir	dry	21	No
Segment 1 30.484691 -90.451816 1 0 0 0 03/02/15 Segment 1 30.484677 -90.449990 1 0 0 0 0 05/08/15 Segment 1 30.484677 -90.449990 1 0 0 0 0 0 0 Segment 1 30.484673 -90.449990 1 0 0 0 0 10/03/15	6	Intersection	30.484683	-90.448476	1	0	0	0	0	10/27/15	rear end	dry	16	No
Segment 1 30.484676 -90.450799 1 0 0 0 0 05/08/15 Segment 1 30.484677 -90.449990 1 0 0 0 0 0/03/15 Segment 1 30.484673 -90.449990 1 0 0 0 0 10/03/15	1	Segment 1	30.484691	-90.451816	1	0	0	0	0	03/02/15	rear end	dry	15	No
Segment 1 30.484677 -90.449990 1 0 0 0 0 08/03/15 Segment 1 30.484673 -90.449990 1 0 0 0 0 10/03/15	2	Segment 1	30.484676	-90.450799	1	0	0	0	0	05/08/15	rear end	dry	18	No
Segment 1 30.484677 -90.449990 1 0 0 0 0 10/03/15 Segment 1 30.484673 -90.454760 1 0 0 0 10/26/15	3	Segment 1	30.484677	-90.449990	1	0	0	0	0	08/03/15	rear end	dry	18	No
Segment 1 30 484673 -90 454760 1 0 0 0 0 10/26/15	4	Segment 1	30.484677	-90.449990	1	0	0	0	0	10/03/15	other	dry	22	No
	2	Segment 1	30.484673	-90.454760	1	0	0	0	0	10/26/15	rear end	wet	6	No

Source: Regional Planning Commission

This document is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409.

Guidelines for Conducting a Crash Data Analysis using the Number-Rate Method and Overrepresented Determination

January 2016

Statewide Average Crash Rates, Segments (2012-2014)

Highway Class	Number of Sections	Number Crashes Per Year	Total Miles	Total Mvm Per Year	Crashes Per Mile Per Year	Crashe s per Mvm	Number Of Fatalities Per Year	Number Of Injuries Per Year
Rural 2-Lane	4423	8925.0	11829.74	9026.45	0.75	0.99	189.0	5420.0
Rural 4-Lane	154	190.3	135.03	312.84	1.41	0.61	5.0	104.0
Rural 4-Lane Divided	281	1188.7	562.27	2159.56	2.11	0.55	21.7	713.7
Rural 4-Lane Interstate	167	2597.7	502.42	5299.00	5.17	0.49	37.3	1405.7
Urban 2-Lane	1825	12657.3	1983.15	5263.31	6.38	2.40	96.0	6384.7
Urban 4-Lane	429	5382.3	234.34	1267.11	22.97	4.25	13.0	2413.0
Urban 4-Lane Divided	568	9477.0	521.11	4043.01	18.19	2.34	25.0	4256.7
Urban 4-Lane Interstate	201	4957.0	272.38	4954.41	18.20	1.00	36.3	2288.0
Rural 2-Lane Cont Turn	15	14.7	10.55	18.08	1.39	0.81	0.0	9.3
Urban 2-Lane Cont Turn	49	378.3	30.52	115.58	12.40	3.27	0.7	174.7
Rural 4-Lane Cont Turn	64	141.7	61.58	249.53	2.30	0.57	2.3	77.0
Urban 4-Lane Cont Turn	265	5903.0	207.14	1523.97	28.50	3.87	13.0	2645.3
Rural 6-Lane	6	4.0	1.14	2.35	3.51	1.70	0.0	1.3
Urban 6-Lane	132	3015.3	73.23	904.82	41.18	3.33	5.7	1224.3
Rural 6-Lane Interstate	9	268.7	30.41	545.74	8.83	0.49	6.0	159.3
Urban 6-Lane Interstate	92	4951.0	89.58	2909.53	55.27	1.70	16.7	2503.7
Urban Other Freeways	36	2249.3	49.40	848.31	45.53	2.65	3.0	969.7
Total	8716	62301.3	16593.99	39443.60	3.75	1.58	470.7	30750.4

(Source: LADOTD Highway Safety Section)

Statewide Average Crash Rates, Signalized Intersections (2012-2014)

Highway Class	Number Of Locations	Number Of Crashes	Million Vehicles	Crashes Per Location	Crashes per MV	Number Of Fatalities	Number Of Injuries
Rural 2-Lane	34	124.3	164.44	3.66	0.76	0	63
Rural 4-Lane	9	26	36.72	2.89	0.71	0	15.7
Rural 4-Lane Divided	20	123	168.75	6.15	0.73	0.7	79.7
Urban 2-Lane	323	1712	2692.2	5.3	0.64	1	859
Urban 4-Lane	441	2974.3	4393.93	6.74	0.68	3	1608.7
Urban 4-Lane Divided	412	3942.7	5682.26	9.57	0.69	5.7	2047.7

This document and the information contained herein is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads which may be implemented utilizing federal aid highway funds; and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409

Rural 2-Lane Cont Turn	2	6.3	5.31	3.17	1.19	0	2.3
Urban 2-Lane Cont Turn	35	294.3	272.75	8.41	1.08	0.7	162
Rural 4-Lane Cont Turn	6	18.7	48.51	3.11	0.38	0	12.7
Urban 4-Lane Cont Turn	273	2575.7	3629.19	9.43	0.71	2.7	1114.7
Urban 6-Lane	194	1775	3315.57	9.15	0.54	2	931.3
Urban Other Freeways	48	632.7	2138.75	13.18	0.3	0.3	276
Rural Interstate Exit	1	8.7	7.26	8.67	1.19	0	10.3
Urban Interstate Exit	182	3505.7	2220.28	19.26	1.58	4.7	1511.3
Total	1980	17719.4	24775.92	8.95	0.72	20.8	8694.4

(Source: LADOTD Highway Safety Section)

Statewide Average Crash Rates, Non-Signalized Intersections (2012-2014)

Highway Class	Number Of Locations	Number Of Crashes	Million Vehicles	Crashes Per Location	Crashes per MV	Number Of Fatalities	Number Of Injuries
Rural 2-Lane	126	353.3	442.82	2.8	0.8	3.3	285
Rural 4-Lane	12	38.7	65.19	3.22	0.59	0.7	37.7
Rural 4-Lane Divided	32	128.7	216.45	4.02	0.59	1.7	111.3
Urban 2-Lane	482	1746.3	3061.01	3.62	0.57	5	897.7
Urban 4-Lane	343	1161	3375.89	3.38	0.34	2.3	711
Urban 4-Lane Divided	376	1610.7	4722.9	4.28	0.34	9	959.3
Rural 2-Lane Cont Turn	1	2	1.2	2	1.67	0	1
Urban 2-Lane Cont Turn	20	79.3	129.38	3.97	0.61	0.3	42.7
Rural 4-Lane Cont Turn	8	28	44.24	3.5	0.63	0	23.3
Urban 4-Lane Cont Turn	227	836.7	3074.17	3.69	0.27	2.3	418.3
Urban 6-Lane	203	872	3792.84	4.3	0.23	3.7	496.3
Urban Other Freeways	44	193	1388.78	4.39	0.14	0	109.7
Rural Interstate Exit	17	79.3	94.05	4.67	0.84	0	48
Urban Interstate Exit	221	1626	2567.11	7.36	0.63	4.3	763
Total	2112	8755	22976.03	4.15	0.38	32.6	4904.3

(Source: LADOTD Highway Safety Section)

Statewide Average Crash Rates, Spots (2012-2014)

Highway Class	Number Of Locations	Number Of Crashes	Million Vehicles	Crashes Per Location	Crashes per MV	Number Of Fatalities	Number Of Injuries
Rural 2-Lane	135	361.3	396.02	2.68	0.91	3.3	187.3
Rural 4-Lane	6	12.7	26.1	2.11	0.49	0	4.7
Rural 4-Lane Divided	70	195.7	520.86	2.8	0.38	2	105
Rural 4-Lane Interstate	224	571	3820.56	2.55	0.15	5.3	313.7
Urban 2-Lane	1612	6071.3	8490.72	3.77	0.72	16	2638
Urban 4-Lane	919	4363.7	6615.95	4.75	0.66	7.7	1894
Urban 4-Lane Divided	1488	7418.3	16681.34	4.99	0.44	12.7	3188.7
Urban 4-Lane Interstate	794	3518.3	18726.36	4.43	0.19	19.3	1571.7
Rural 2-Lane Cont Turn	56	245.3	289.12	4.38	0.85	0.3	106
Urban 2-Lane Cont Turn	10	25.7	77.38	2.57	0.33	0	7.7
Rural 4-Lane Cont Turn	819	5148	8019.78	6.29	0.64	8	2235.3
Urban 4-Lane Cont Turn	432	2756.7	5753.2	6.38	0.48	4.7	1107.7
Rural 6-Lane	40	105.7	761.94	2.64	0.14	4.3	53
Urban 6-Lane	593	4699.7	21395.13	7.93	0.22	14	2383.3
Rural 6-Lane Interstate	170	2054	4920.89	12.08	0.42	2	875.3
Urban 6-Lane Interstate	30	100.3	179.51	3.34	0.56	0.3	47.7
Urban Other Freeways	31	118.7	162.28	3.83	0.73	0	48.7
Total	7429	37766.4	96837.14	5.08	0.39	99.9	16767.8

(Source: LADOTD Highway Safety Section)

Appendix F: Spot Speed Study

Spot Speed Study

Location: Minnesota Park

Report #: 0031 Time of Study: 1:30 PM
Date: 3/23/2017 Weather: Fair
Direction of Travel: Eastbound Road Conditions: Dry

Route: Parish: Tangipahoa Control Section: Posted Speed Limit 35

Mean (Average):	33	50th Percentile:	33	
Mode:	31	85th Percentile:	36	
Median:	33	95th Percentile:	39	
Bottom of 10 MPH Pace Speed	29	No. of Observations:	100	
Ton of 10 MPH Pace Speed:	38	% of Vehicles in Pace Range:	87%	

Speed	Freq.	Percent	Cumulative
15	0	0.00%	0.00%
16	0	0.00%	0.00%
17	0	0.00%	0.00%
18	0	0.00%	0.00%
19	0	0.00%	0.00%
20	0	0.00%	0.00%
21	0	0.00%	0.00%
22	0	0.00%	0.00%
23	0	0.00%	0.00%
24	0	0.00%	0.00%
25	0	0.00%	0.00%
26	1	1.00%	1.00%
27	3	3.00%	4.00%
28	2	2.00%	6.00%
29	4	4.00%	10.00%
30	11	11.00%	21.00%
31	13	13.00%	34.00%
32	13	13.00%	47.00%
33	13	13.00%	60.00%
34	11	11.00%	71.00%
35	7	7.00%	78.00%
36	7	7.00%	85.00%
37	4	4.00%	89.00%
38	4	4.00%	93.00%
39	3	3.00%	96.00%
40	2	2.00%	98.00%
41	2	2.00%	100.00%
42	0	0.00%	100.00%
43	0	0.00%	100.00%
44	0	0.00%	100.00%

Speed	Freq.	Percent	Cumulative
45	0	0.00%	100.00%
46	0	0.00%	100.00%
47	0	0.00%	100.00%
48	0	0.00%	100.00%
49	0	0.00%	100.00%
50	0	0.00%	100.00%
51	0	0.00%	100.00%
52	0	0.00%	100.00%
53	0	0.00%	100.00%
54	0	0.00%	100.00%
55	0	0.00%	100.00%
56	0	0.00%	100.00%
57	0	0.00%	100.00%
58	0	0.00%	100.00%
59	0	0.00%	100.00%
60	0	0.00%	100.00%
61	0	0.00%	100.00%
62	0	0.00%	100.00%
63	0	0.00%	100.00%
64	0	0.00%	100.00%
65	0	0.00%	100.00%
66	0	0.00%	100.00%
67	0	0.00%	100.00%
68	0	0.00%	100.00%
69	0	0.00%	100.00%
70	0	0.00%	100.00%
71	0	0.00%	100.00%
72	0	0.00%	100.00%
73	0	0.00%	100.00%
74	0	0.00%	100.00%
!			

Spot Speed Study

Location: S Range Road

Report #: 0031 Time of Study: 1:45 PM
Date: 3/23/2017 Weather: Fair
Direction of Travel: Northbound Road Conditions: Dry

Route: Parish: Tangipahoa Control Section: Posted Speed Limit 35

Mean (Average):	39	50th Percentile:	39	
Mode:	41	85th Percentile:	44	
Median:	39	95th Percentile:	47	
Bottom of 10 MPH Pace Speed	35	No. of Observations:	100	
Top of 10 MPH Pace Speed:	44	% of Vehicles in Pace Range:	70%	

Speed	Freq.	Percent	Cumulative
15	0	0.00%	0.00%
16	0	0.00%	0.00%
17	0	0.00%	0.00%
18	0	0.00%	0.00%
19	0	0.00%	0.00%
20	0	0.00%	0.00%
21	0	0.00%	0.00%
22	0	0.00%	0.00%
23	0	0.00%	0.00%
24	0	0.00%	0.00%
25	0	0.00%	0.00%
26	1	1.00%	1.00%
27	1	1.00%	2.00%
28	2	2.00%	4.00%
29	1	1.00%	5.00%
30	2	2.00%	7.00%
31	4	4.00%	11.00%
32	0	0.00%	11.00%
33	4	4.00%	15.00%
34	3	3.00%	18.00%
35	6	6.00%	24.00%
36	5	5.00%	29.00%
37	7	7.00%	36.00%
38	11	11.00%	47.00%
39	7	7.00%	54.00%
40	5	5.00%	59.00%
41	11	11.00%	70.00%
42	5	5.00%	75.00%
43	4	4.00%	79.00%
44	9	9.00%	88.00%

Speed	Freq.	Percent	Cumulative
45	2	2.00%	90.00%
46	3	3.00%	93.00%
47	2	2.00%	95.00%
48	1	1.00%	96.00%
49	4	4.00%	100.00%
50	0	0.00%	100.00%
51	0	0.00%	100.00%
52	0	0.00%	100.00%
53	0	0.00%	100.00%
54	0	0.00%	100.00%
55	0	0.00%	100.00%
56	0	0.00%	100.00%
57	0	0.00%	100.00%
58	0	0.00%	100.00%
59	0	0.00%	100.00%
60	0	0.00%	100.00%
61	0	0.00%	100.00%
62	0	0.00%	100.00%
63	0	0.00%	100.00%
64	0	0.00%	100.00%
65	0	0.00%	100.00%
66	0	0.00%	100.00%
67	0	0.00%	100.00%
68	0	0.00%	100.00%
69	0	0.00%	100.00%
70	0	0.00%	100.00%
71	0	0.00%	100.00%
72	0	0.00%	100.00%
73	0	0.00%	100.00%
74	0	0.00%	100.00%

Spot Speed Study

Location: S Range Road

Report #: 0031 Time of Study: 2:00 PM
Date: 3/23/2017 Weather: Fair
Direction of Travel: Southbound Road Conditions: Dry

Route: Parish: Tangipahoa Control Section: Posted Speed Limit 35

Mean (Average):	35	50th Percentile:		
Mode:	38	85th Percentile: 40		
Median:	35	95th Percentile:	44	
Bottom of 10 MPH Pace Speed	31	No. of Observations: 100		
Top of 10 MPH Pace Speed:	40	% of Vehicles in Pace Range:	68%	

Speed	Freq.	Percent	Cumulative
15	0	0.00%	0.00%
16	0	0.00%	0.00%
17	0	0.00%	0.00%
18	0	0.00%	0.00%
19	0	0.00%	0.00%
20	0	0.00%	0.00%
21	0	0.00%	0.00%
22	0	0.00%	0.00%
23	1	1.00%	1.00%
24	0	0.00%	1.00%
25	0	0.00%	1.00%
26	3	3.00%	4.00%
27	0	0.00%	4.00%
28	3	3.00%	7.00%
29	3	3.00%	10.00%
30	7	7.00%	17.00%
31	8	8.00%	25.00%
32	6	6.00%	31.00%
33	7	7.00%	38.00%
34	6	6.00%	44.00%
35	11	11.00%	55.00%
36	6	6.00%	61.00%
37	5	5.00%	66.00%
38	11	11.00%	77.00%
39	2	2.00%	79.00%
40	6	6.00%	85.00%
41	1	1.00%	86.00%
42	5	5.00%	91.00%
43	1	1.00%	92.00%
44	4	4.00%	96.00%

Speed	Freq.	Percent	Cumulative
45	0 0	0.00%	96.00%
46	3	3.00%	99.00%
47	0	0.00%	99.00%
48	0	0.00%	99.00%
49	1	1.00%	100.00%
50	0	0.00%	100.00%
51	0	0.00%	100.00%
52	0	0.00%	100.00%
53	0	0.00%	100.00%
54	0	0.00%	100.00%
55	0	0.00%	100.00%
56	0	0.00%	100.00%
57	0	0.00%	100.00%
58	0	0.00%	100.00%
59	0	0.00%	100.00%
60	0	0.00%	100.00%
61	0	0.00%	100.00%
62	0	0.00%	100.00%
63	0	0.00%	100.00%
64	0	0.00%	100.00%
65	0	0.00%	100.00%
66	0	0.00%	100.00%
67	0	0.00%	100.00%
68	0	0.00%	100.00%
69	0	0.00%	100.00%
70	0	0.00%	100.00%
71	0	0.00%	100.00%
72	0	0.00%	100.00%
73	0	0.00%	100.00%
74	0	0.00%	100.00%

Appendix B Meeting Summaries

MEETING SUMMARY

STAGE 0 FEASIBILITY STUDY
MINNESOTA PARK ROAD, ICRR TO RANGE ROAD
SAFETY AND CAPACITY STUDY
TANGIPAHOA PARISH
PDC Took ST 1 17

RPC Task ST-1.17 RCLC No. 717-01

Meeting Date: January 19, 2017

ATTENDEES: Jeff Roesel, RPC; Nik Richard, RPC; Maurice Jordan, TPC; David Vial, TPC; Andy Currier, Tangipahoa Parish Government; Frank Zemmer, RCLC; Angela KG Eymard, RCLC; Arthur Ledet, RCLC; Robby Miller, Tangipahoa Parish Government; & Brin Ferlito, Vectura Consulting Services.

The purpose of this meeting was to discuss current conditions and proposed improvements along the Minnesota Park Road corridor from ICRR to Range Road with RPC, Tangipahoa Parish and other interested stakeholders.

- Minnesota Park Road is a Federal Aid Network Road.
- 2. RPC to make crash data and aerial photo imagery available.
- 3. Tangipahoa Parish Government concerns: 1) do not like signal, since it is the only signal that TPG maintains. There are lengthy delays when maintenance is needed due to lead time in part ordering. Parish would like all-way stop or roundabout instead of signal, possible turning lanes at intersection, Two-way left turning lane for corridor, and sidewalks are important.
- 4. There is no recorded right-of-way. Tacit ROW is assumed 18" behind ditch for 50' ROW.
- 5. The lot along Range Road at the intersection is for sale. The Naquin tract is possible for development.
- 6. Wish to improve capacity along Minnesota Park Road.

RICHARD C. LAMBERT CONSULTANTS, LLC

- 7. Development is area included apartment complex in construction and newly opened Summerfield Retirement Community..
- 8. For roundabout LADOTD EDSM may have to be followed.
- 9. Maurice Jordan is the point of contact for Tangipahoa Parish.

This document represents the RCLC's understanding of the issues discussed at the above dated meeting. If any party disagrees with the documentation contained herein, please make a written request to the Architect/Engineer so the meeting summary may be revised accordingly. Failure to notify RCLC within 7 days of receipt of this document shall indicate acceptance of the content herein.

I:\File Cabinet\71701 Minnesota Park Rd Stage 0\Meeting Summaries\Minnesota Park Road Meeting Summary 01192017.doc

MEETING SUMMARY

STAGE 0 FEASIBILITY STUDY
MINNESOTA PARK ROAD, ICRR TO RANGE ROAD
SAFETY AND CAPACITY STUDY
TANGIPAHOA PARISH

DDC Took ST 4 47

RPC Task ST-1.17 RCLC No. 717-01

Meeting Date: May 24, 2017

ATTENDEES: Walter Brooks, RPC; Jeff Roesel, RPC; Nik Richard, RPC; Maurice Jordan, TPG; Wesley Danna, TPG; Robby Miller, Tangipahoa Parish Government; Frank Zemmer, RCLC; Angela KG Eymard, RCLC; Arthur Ledet, RCLC.

The purpose of the Project Management Committee meeting was to discuss the draft report.

- 1. Recap of kick-off meeting.
- 2. Discussion over draft report and alternatives including description of complete streets.
- 3. Tangipahoa Parish Government wishes for us to do round-about with sidewalk on south side of Minnesota Park Road and to place property limes on maps.
- 4. RPC states that TPG would have to get ROW per federal standards. 4th leg of RAB could be used for access purposes.
- 5. RPC wishes for RCLC to go into more detail in the purpose and needs section of report including addressing Range Road backup. RCLC needs to state information about crashes and the problems with the roadway. RLCL needs to go into details about alternative 2 costing as much as alternative1, needing additional ROW with sidewalk installation, and not necessarily reducing crashes. RCLC needs to describe what RAB will do to improve intersection. RCLC needs to place page numbers on appendix, use new TPG logo, have federal claim statement on inside cover page, list state project #, and discuss recommendation of alternative 1 with south side sidewalk.
- 6. Next step is to set up meeting with LADOTD.

RICHARD C. LAMBERT CONSULTANTS, LLC

- 7. RPC wishes for RLCC to cost out alternative 1 with sidewalks along south side including exact costs for design of geotechnical, surveying, and engineering.
- 8. Range Road has a 60' ROW per TPG.
- 9. ICRR contact is John Denning at 601-914-2658 or John.Denning@cn.ca.
- 10. Next meeting tentative with DOTD for 6/15/17.

This document represents the RCLC's understanding of the issues discussed at the above dated meeting. If any party disagrees with the documentation contained herein, please make a written request to the Architect/Engineer so the meeting summary may be revised accordingly. Failure to notify RCLC within 7 days of receipt of this document shall indicate acceptance of the content herein.

I:\File Cabinet\71701 Minnesota Park Rd Stage 0\Weeting Summaries\Winnesota Park Road Meeting Summary 05242017.doc

TELEPHONE CONVERSATION SUMMARY

STAGE 0 FEASIBILITY STUDY
MINNESOTA PARK ROAD, ICRR TO RANGE ROAD
SAFETY AND CAPACITY STUDY
TANGIPAHOA PARISH
RPC Task ST-1.17

RPC Task ST-1.17 RCLC No. 717-01

Meeting Date: June 14, 2017

Call between Angela Eymard, RCLC and John Denning, Canadian National Railroad (601-914-2658).

The purpose of the telephone conversation was to discuss the proposed sidewalk along Minnesota Park Road that the Railroad crossing for design criteria.

- A standard crossing agreement will be put in place between the Railroad and Tangipahoa Parish for any sidewalk crossing over the railroad similar to what the City of Hammond has in place now.
- 2. Plans must be submitted by the Engineer to Mr. Denning for review and approval.
- 3. Design criteria: the edge of the sidewalk must be 8' from the center of the railroad gate post.
- 4. The railroad advices against gates across the sidewalk. If a pedestrian gate is wanted by the Parish, an escape route for handicapped citizens must be created to escape the area blocked by the gates prior to the train approaching. The Amtrak train can reach speeds of up to 79mph along this line. The escape route can end up costing as much as \$500,000 as other examples along this particular line have been constructed. Mr. Denning recommends signage instead of pedestrian gate.

This document represents the RCLC's understanding of the issues discussed at the above dated meeting. If any party disagrees with the documentation contained herein, please make a written request to the Architect/Engineer so the meeting summary may be revised accordingly. Failure to notify RCLC within 7 days of receipt of this document shall indicate acceptance of the content herein.

I:\File Cabinet\71701 Minnesota Park Rd Stage 0\text{Weeting Summaries\Minnesota Park Road Telephone Summary 06142017.doc

MEETING SUMMARY

STAGE 0 FEASIBILITY STUDY
MINNESOTA PARK ROAD, ICRR TO RANGE ROAD
SAFETY AND CAPACITY STUDY
TANGIPAHOA PARISH
RPC Task ST-1.17

RPC Task ST-1.17 RCLC No. 717-01

Meeting Date: June 15, 2017

ATTENDEES: Walter Brooks, RPC; Jeff Roesel, RPC; Maurice Jordan, TPG; Robby Miller, Tangipahoa Parish Government; Frank Zemmer, RCLC; Angela KG Eymard, RCLC; Arthur Ledet, RCLC; Cristine Gowland, DOTD; Jennifer Branton, DOTD.

The purpose of the Project Management Committee meeting was to discuss the draft report with members of DOTD for their input.

- 1. Re-cap of history of project and prior meetings stressing the want to remove the signal at the Minnesota Park Road @ Range Road intersection.
- 2. Discussion of complete streets criteria, how 5' wide sidewalk on south side of roadway would be okay with Tangipahoa Parish Government, and what funding options could be used for construction.
- 3. Possible to remove traffic signal during roundabout construction if all way stop signs have appropriate level of service at intersection.
- 4. Incorporate any DOTD comments, modify cost estimates as costs seem too low, and add meeting notes and telephone conversation notes to final report which is due Friday, June 30th.

This document represents the RCLC's understanding of the issues discussed at the above dated meeting. If any party disagrees with the documentation contained herein, please make a written request to the Architect/Engineer so the meeting summary may be revised accordingly. Failure to notify RCLC within 7 days of receipt of this document shall indicate acceptance of the content herein.

I:\File Cabinet\71701 Minnesota Park Rd Stage 0\Meeting Summaries\Minnesota Park Road Meeting Summary 06152017.doc

EMAIL SUMMARY

STAGE 0 FEASIBILITY STUDY
MINNESOTA PARK ROAD, ICRR TO RANGE ROAD
SAFETY AND CAPACITY STUDY
TANGIPAHOA PARISH
RPC Task ST-1.17

Meeting Date: June 22, 2017

RCLC No. 717-01

Email between Arthur Ledet, RCLC and Gary Leblanc, DOTD follow up to telephone conversation.

The purpose of the email was to follow up from a telephone conversation which discussed the complete streets design criteria.

1. See attached email.

This document represents the RCLC's understanding of the issues discussed at the above dated meeting. If any party disagrees with the documentation contained herein, please make a written request to the Architect/Engineer so the meeting summary may be revised accordingly. Failure to notify RCLC within 7 days of receipt of this document shall indicate acceptance of the content herein.

I:\File Cabinet\71701 Minnesota Park Rd Stage 0\text{Weeting Summaries\Minnesota Park Road Email Summary 06222017.doc

From: Arthur Ledet
To: Gary Leblanc

Cc: Frank Zemmer; aeymard@rclconsultants.com

Subject: Minnesota Park Complete Street

Date: Thursday, June 22, 2017 2:47:34 PM

Gary,

We spoke a few weeks ago regarding the complete street policy and how it would apply to the Minnesota Park Road Stage O Feasibility Study we are currently working on for the New Orleans Regional Planning Commission. Minnesota Park Road is currently a two lane undivided roadway that connects US 51 to Range Rd in Tangipahoa Parish. The Parish and the RPC are working on improving the Minnesota Park Corridor and the intersection of Minnesota Park at Range Rd.

In an effort to meet LADOTD guidelines, RCLC in conjunction with Tangipahoa Parish and The RPC are currently proposing a sidewalk along this corridor. In order to accommodate a sidewalk on one side of Minnesota Park, subsurface drainage would have to be installed, however this improvement alone does not accommodate all the complete street requirements.

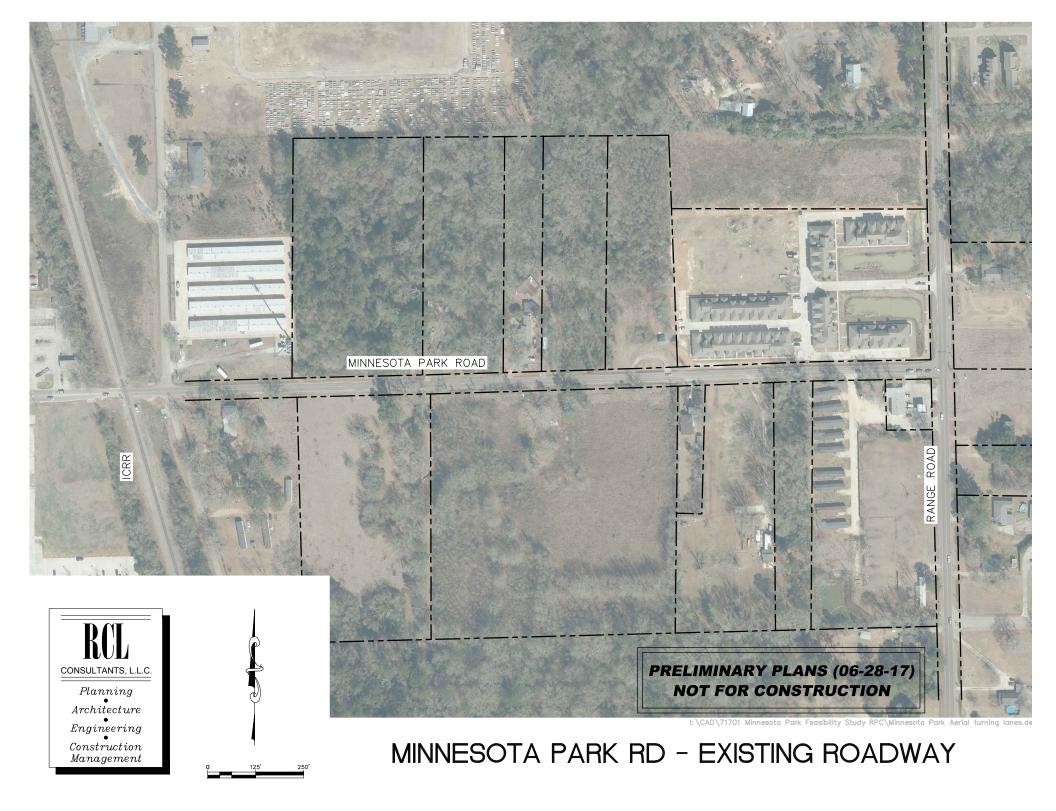
Additional alternatives were considered including a shared use path but later deemed not feasible due to the additional right-of-way needed from multiple land owners. Another option was to construct sidewalks on both sides of Minnesota Park Rd since it could fit within the right-of-way but required subsurface drainage on both sides due to the limited right-of-way. Due to the cost of these options and the additional required right-of-way from multiple land owners, it was determined that the sidewalk on one side of the roadway with subsurface drainage was the most feasible option and would be an improvement to this corridor but would not completely meet the LADOTD Complete Streets Policy.

As discussed, even though installing a sidewalk does no accommodate all the complete street requirements, it would be an would be an improvement to this corridor and a viable option to bring the street closer to the complete street concept.

Thanks again for your time and input.

Arthur Ledet, E.I.
Richard C. Lambert Consultants, LLC


900 West Causeway Approach Mandeville. LA 70471

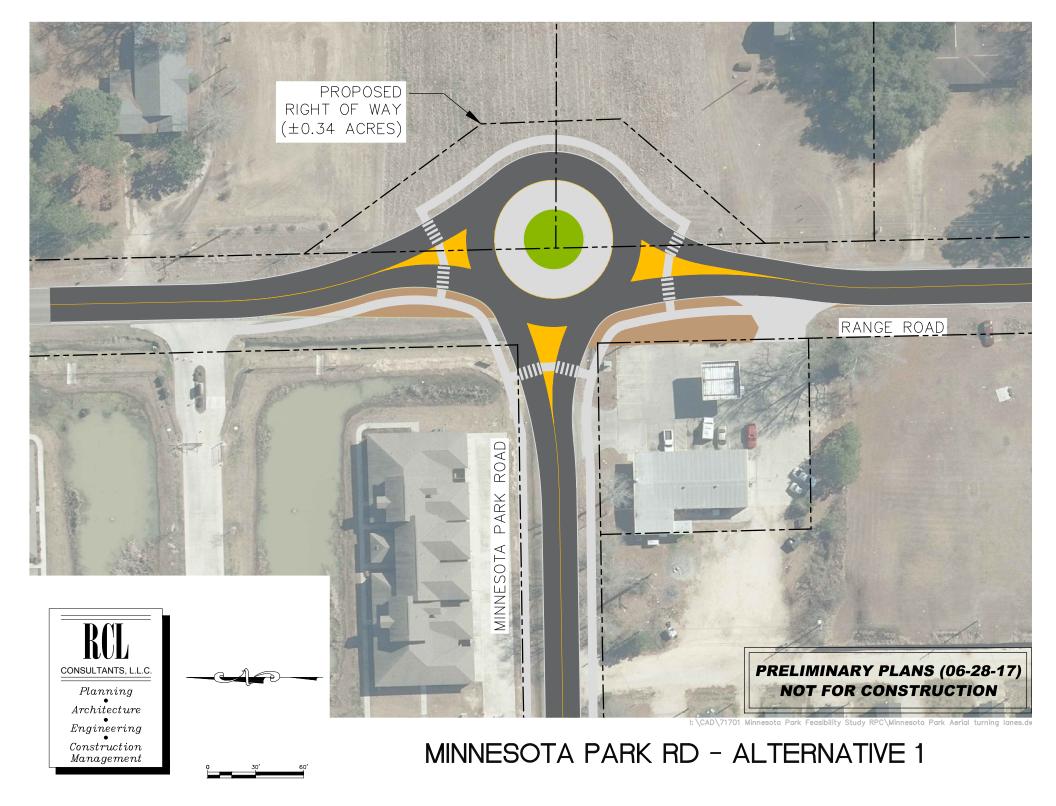

Phone: 985.727.4440 Fax: 985.727.4447

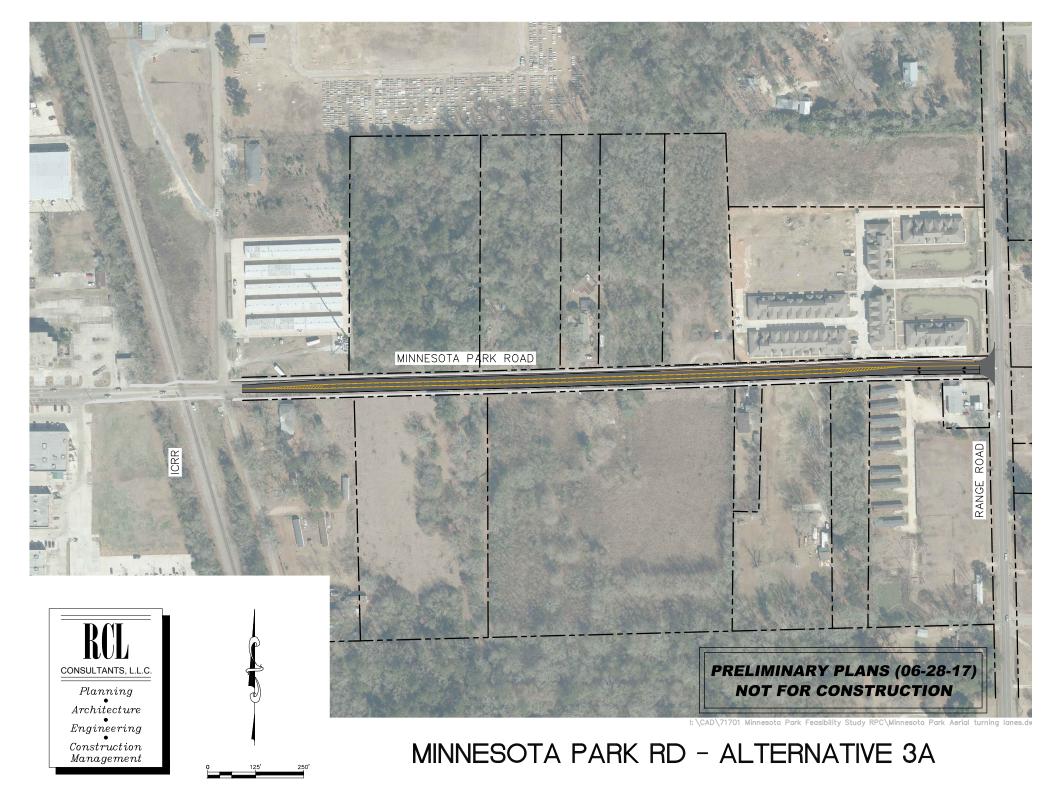
Email: aledet@rclconsultants.com

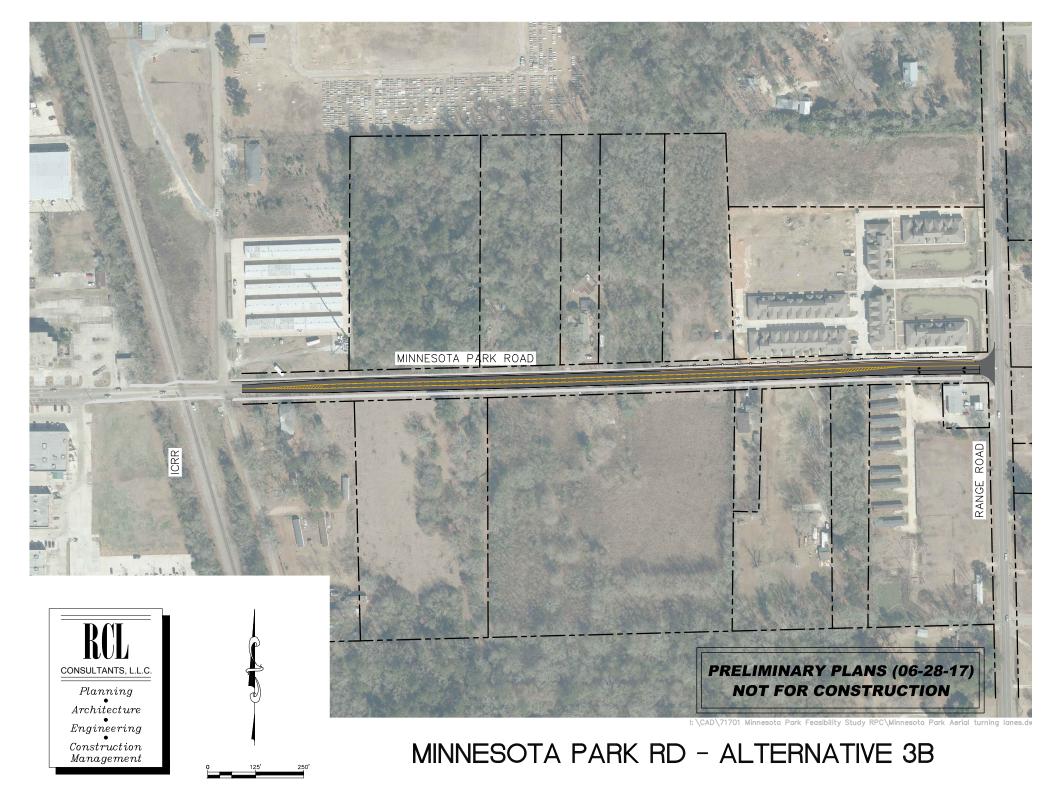
ShareFile Upload Link

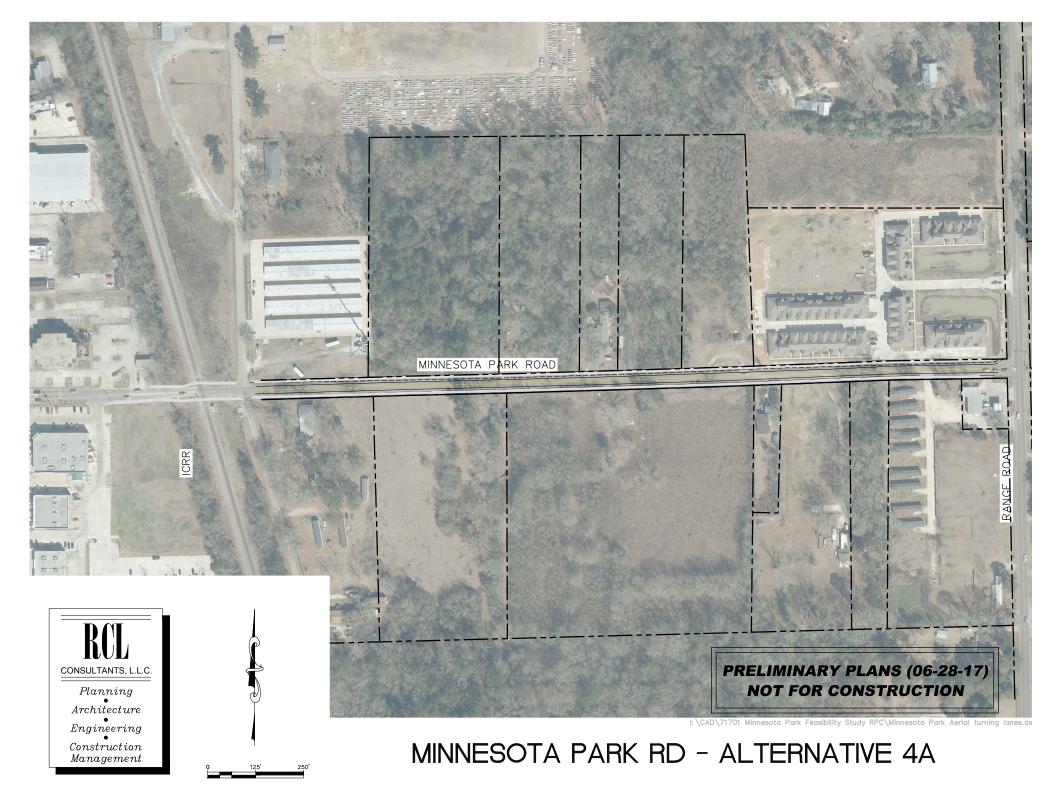
Appendix C Existing Roadway and Intersection Aerial Geometry

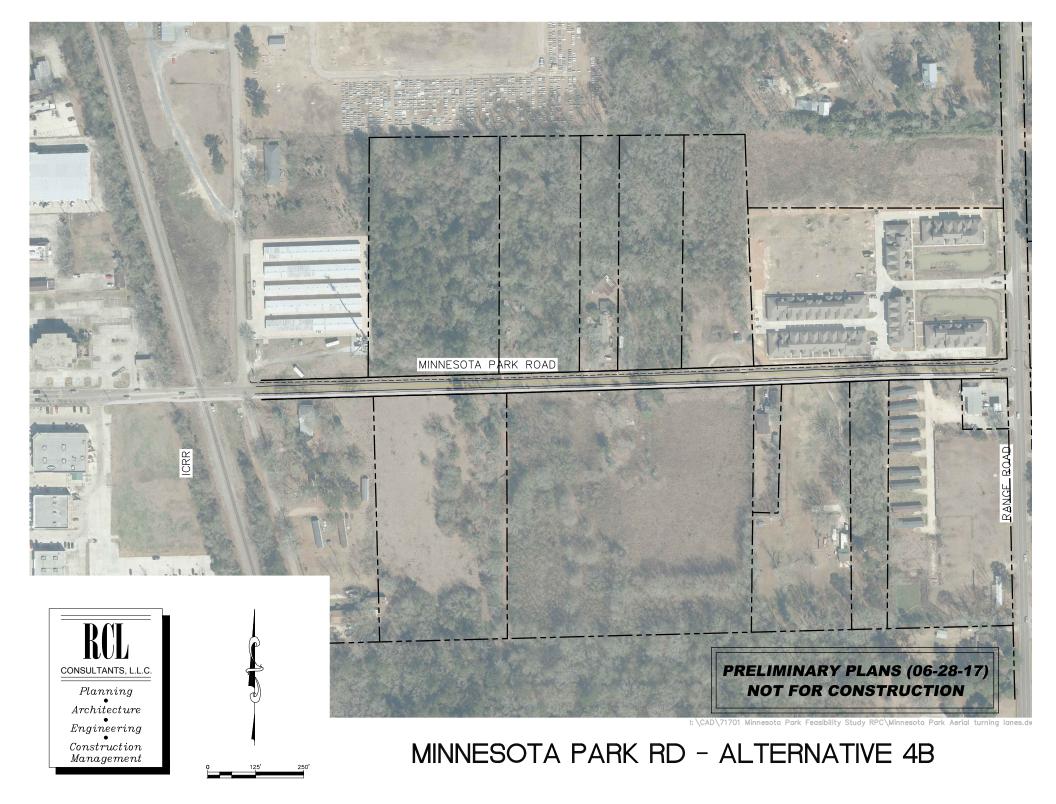
Appendix D Roadway Renderings Presented from Driver's Perspective

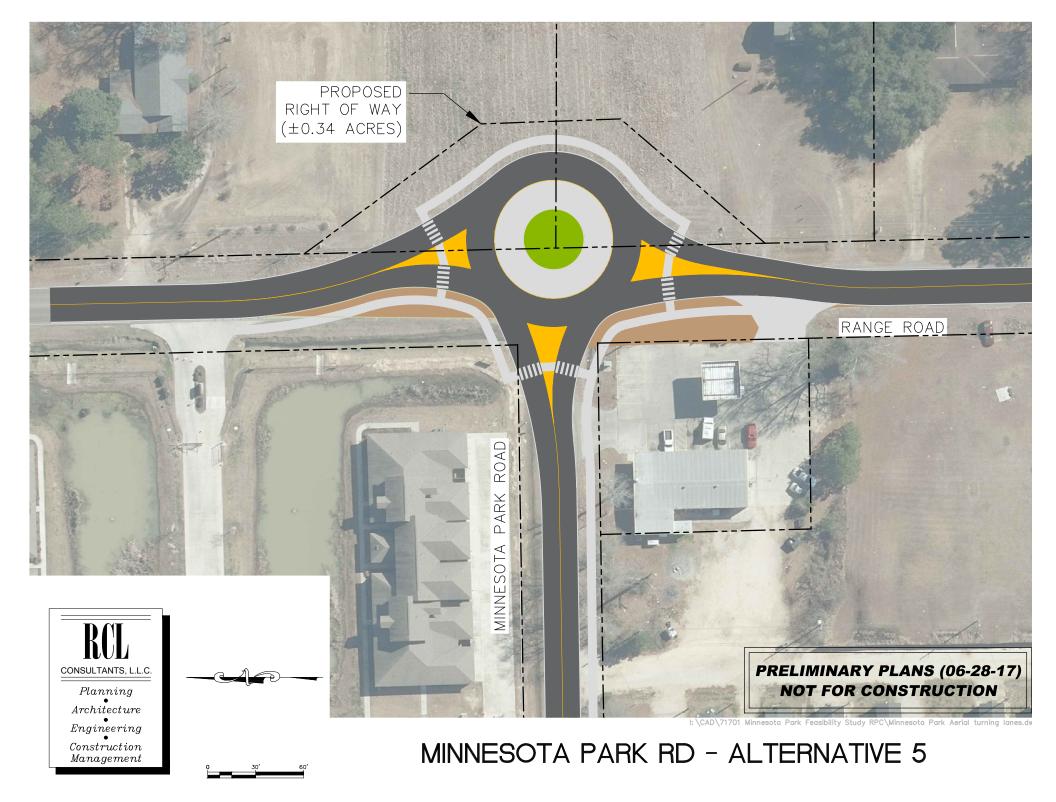







Appendix E Proposed Roadway and Intersection Aerial Geometry





Appendix F
Preliminary Scope and Budget Checklist,
Environmental Checklist and Opinion of Construction
Cost

STAGE 0 Preliminary Scope and Budget Checklist

Α.	Project Background				
District	62	Parish	Taı	ngipahoa	
Route	Minnesota Park Road	Control S	Section	none	
Begin I	og Mile	End Log	Mile		
Project	Category (Safety, Capacity, etc.):	Safety			
Date St	udy Completed: May 5, 2017				
Describ	e the existing facility:				
Functio	nal classification: Major Urban Co	llector 1	Number aı	nd width of lanes:	2 – 11' wide
Shoulde	er width and type: None	I	Mode:		
Access	control: ADT:		Po	osted Speed:	35 MPH
Describ	e any existing pedestrian facilities		e should	be considered for a	
Describ	e the adjacent land use: Resident	ial and commercial			
Who is	the sponsor of the study? Tangipal	noa Parish Governr	nent		
	udy team members: <u>Richard C</u> ahoa Parish Government, Regional			C, Vectura Consul	
	is project be adding miles to the of ownership been initiated with the	0	•	alignment, new fac	•
Are the	re recent, current or near future plar	nning studies or pro	jects in th	e vicinity?	No
If yes, p	please describe the relationship of the	nis project to those	studies/pr	ojects. N/A	
Provide	a brief chronology of these plannir	ng study activities:	N/A	A	
scope o	Purpose and Need ne Purpose (reason for proposing the project. Also, identify any adder and intersection improvements to be roadway. Determine feasibility of	ditional goals and one enhance capacity,	bjectives increase s	for the project. safety, and minimize	e delay along existing
resourc	Agency Coordination a brief synopsis of coordination agencies. gs with input from various officials				
	ansportation agencies were included al Planning Commission	d in the agency coo	rdination	effort?	
Region	be the level of participation of other al Planning Commission will review determine feasibility of various su	ew study and traff			

What steps will need to be taken with each agency during NEPA scoping?		
As these improvements are required to provide increased safety on an existing route without any forese significant environmental, cultural, or historical impacts, it is anticipated that a D list Categorical Exclusion was		
D. Public Coordination		
Provide a synopsis of the coordination effort with the public and stakeholders; include specific timelines, meeting details, agendas, sign-in sheets, etc. (if applicable).		
Recommendations and concerns from the public and other stakeholders will be documented. It is not anticipated		
that a public meeting will be necessary.		
E. Range of Alternatives – Evaluation and Screening		
Give a description of the project concept for each alternative studied.		
What are the major design features of the proposed facility (attach aerial photo with concept layout, if applicable). Roadway improvements implementing either a roundabout at the intersection of Minnesota Park Road and		
Range Road or adding additional turning lanes at the intersection. Possible alternatives also include pavement		
widening for the inclusion of a two way left turn lane and sidewalks for pedestrian traffic.		
Will design exceptions be required? None are anticipated at this time.		
What impact would this project have on freight movements? None are anticipated as the design for the roundabout would accommodate WB-67 vehicle movements.		
Does this project cross or is it near a railroad crossing? The project ends at the ICRR right-of-way.		
DOTD's "Complete Streets" policy should be taken into consideration. Per the policy, any exception for not accommodating bicyclists, pedestrians and transit users will require the approval of the DOTD chief engineer. For exceptions on Federal-aid highway projects, concurrence from FHWA must also be obtained. In addition any exception in an urbanized area, concurrence from the MPO must also be obtained. • Describe how the project will implement the policy or include a brief explanation of why implementing the policy would not be feasible. Due to the limited right-of-way, LADOTD"s complete streets policy implementation may be impractical.		
How are Context Sensitive Solutions being incorporated into the project? Context Sensitive Solutions will be considered throughout the design processes. Was the DOTD's "Access Management" policy taken into consideration? If so, describe how. A 3-lane section		
with a two way left turn lane was considered, but due to limited right-of-way, access management may be impractical.		
Were any safety analyses performed? If so describe results. None at this time.		
Are there any abnormal crash locations or overrepresented crashes within the project limits? Yes		

Range of Alternatives – Evaluation and Screening (Continued) What future traffic analyses are anticipated? SIDRA Analysis has been conducted. Will fiber optics be required? If so, are there existing lines to tie into? Are there any future ITS/traffic considerations? __No What is the required Transportation Management Plan (TMP) level as defined by EDSM No. VI.1.1.8? Level 2 Please attach documentation required for Stage 0 for this level TMP. Was Construction Transportation Management/Property Access taken into consideration? Yes Were alternative construction methods considered to mitigate work zone impacts? Yes Describe screening criteria used to compare alternatives and from what agency the criteria were defined. Give an explanation for any alternative that was eliminated based on the screening criteria. Which alternatives should be brought forward into NEPA and why? Each alternative can be reviewed during the NEPA process. Did the public, stakeholders and agencies have an opportunity to comment during the alternative screening process? Yes Describe any unresolved issues with the public, stakeholders and/or agencies. None are known at this time. F. **Planning Assumptions and Analytical Methods** What is the forecast year used in the study? ______2040 What method was used for forecasting traffic volumes? Volumes for future years were calculated using a growth rate of 1.53% obtained from the Regional Planning Commission from an email dated March 2, 2017. Are the planning assumptions and the corridor vision/purpose and need statement consistent with the long range transportation plan? Yes What future year policy and/or data assumptions were used in the transportation planning process as they are related to land use, economic development, transportation costs and network expansion?

G. Potential Environmental Impacts

See the attached Stage 0 Environmental Checklist

H. Cost Estimates

TOTAL PROJECT COST

Provide a cost estimate for each feasible alternative without sidewalks:

Remove existing signal at Minnesota Park Road and Range Road intersection and convert to roundabout (Alternative 1).

Engineering Design:	\$ 284,630.87
 Additional Traffic Analyses: 	\$ 10,000.00
• Environmental Processing:	
• Mitigation:	
R/W Acquisition: (C of A if applicable)	\$ 74,052.00
• Utility Relocations:	\$ 91,945.05
 Construction (including const. traffic management): 	\$ 1,568,401.70
 Construction Observation and 	\$ 78,420.09
Inspection:	
TOTAL PROJECT COST	\$ 2,107,449.71

Widen existing roadway at intersection of Minnesota Park Road and Range Road to include dedicated turning lanes at intersection signal (Alternative 2).

•	Engineering Design:	\$ 209,757.00
•	Additional Traffic Analyses:	
•	Environmental Processing:	
•	Mitigation:	
•	R/W Acquisition: (C of A if applicable)	\$ 50,000.00
•	Utility Relocations:	\$ 146,819.26
•	Construction (including const. traffic management): Construction Observation and	\$1,076,763.26 \$ 53,838.16
•	Inspection:	φ 55,050.10

Widen existing roadway to include a shared turning lane along Minnesota Park Road (Alternative 3A).

\$1,537,177.69

• Engineering Design:	\$ 312,745.96
 Additional Traffic Analyses: 	
• Environmental Processing:	
• Mitigation:	
R/W Acquisition: (C of A if applicable)	\$ 223,900.00
• Utility Relocations:	\$ 287,379.26
 Construction (including const. traffic management): 	\$1,536,972.15
 Construction Observation and Inspection: 	\$ 76,848.61
TOTAL PROJECT COST	\$2,447,845.98

Widen existing roadway to include a shared turning lane along Minnesota Park Road (Alternative 3B). \$ 231,553.35 Engineering Design: Additional Traffic Analyses: **Environmental Processing:** Mitigation: • R/W Acquisition: \$ 601,700.00 (C of A if applicable) **Utility Relocations:** \$ 287,379.26 Construction (including const. \$1,063,348.60 traffic management): Construction Observation and \$ 53,167.43 Inspection: TOTAL PROJECT COST \$2,237,148.64 Provide a cost estimate for each feasible alternative with sidewalks along Minnesota Park Road: Remove existing signal at Minnesota Park Road and Range Road intersection and convert to roundabout (Alternative 1). Engineering Design: 432,523.09 \$ Additional Traffic Analyses: 10,000.00 • Environmental Processing: Mitigation: • R/W Acquisition: 74,052.00 \$ (C of A if applicable) • Utility Relocations: 91,945.05 Construction (including const. \$ 2,431,106.28 traffic management): Construction Observation and \$ 121,555.31 Inspection: TOTAL PROJECT COST \$ 3,161,181.73 Widen existing roadway at intersection of Minnesota Park Road and Range Road to include dedicated turning lanes at intersection signal (Alternative 2). Engineering Design: \$ 310,112.00 Additional Traffic Analyses: **Environmental Processing:** Mitigation: • R/W Acquisition: 50,000.00 (C of A if applicable) Utility Relocations: \$ 146,819.26 \$<u>1,662,167.38</u> • Construction (including const. traffic management): Construction Observation and \$ 83,108.37 Inspection:

\$2,252,207.01

TOTAL PROJECT COST

Widen existing roadway to include a share	d turning lane along Minnesota Par	k Road (Alternative 3A).
• Engineering Design:	\$ 359,285.43	
• Additional Traffic Analyses:		
• Environmental Processing:		
Mitigation:		
 R/W Acquisition: (C of A if applicable) 	\$ 233,900.00	
• Utility Relocations:	\$ 287,379.26	
• Construction (including const.	\$1,808,452.41	
traffic management):Construction Observation and Inspection:	\$ 90,422.62	
TOTAL PROJECT COST	\$2,779,439.72	
Widen existing roadway to include a share	d turning lane along Minnesota Par	k Road (Alternative 3B).
• Engineering Design:	\$ 260,183.60	
 Additional Traffic Analyses: 		
• Environmental Processing:		
• Mitigation:		
 R/W Acquisition: (C of A if applicable) 	\$ 601,700.00	
• Utility Relocations:	\$ 287,379.26	
	\$1,230,358.39	
traffic management):Construction Observation and Inspection:	\$ 61,517.92	
TOTAL PROJECT COST	\$2,441,139.17	
Adding sidewalks along both sides of Mini	nesota Park Road (Alternative 4A).	
• Engineering Design:	\$ 180,710.85	
 Additional Traffic Analyses: 		
• Environmental Processing:		
Mitigation:		
 R/W Acquisition: (C of A if applicable) 		
• Utility Relocations:		
 Construction (including const. traffic management): 	\$1,051,146.63	
 Construction Observation and Inspection: 	\$ 52,557.33	
TOTAL PROJECT COST	\$1,287,434.81	

Adding sidewalks along the south side of Mi	nnesota Park Road (Alternativ	/e 4B).
• Engineering Design:	\$ 99,939.93	<u> </u>
• Additional Traffic Analyses:		<u></u>
• Environmental Processing:		<u></u>
• Mitigation:		<u></u>
 R/W Acquisition: (C of A if applicable) 		_
• Utility Relocations:		<u>—</u>
• Construction (including const.	\$582,982.95	_
traffic management):Construction Observation and Inspection:	\$ 29,146.15	_
TOTAL PROJECT COST	\$712,072.03	
Remove existing signal at Minnesota Park install sidewalks along south side of Minnesota	ota Park Road (Alternative 5).	
• Engineering Design:	\$ 359,198.84	<u>—</u>
<u> </u>	\$ 10,000.00	<u>—</u>
• Environmental Processing:		<u>—</u>
• Mitigation:		<u> </u>
• R/W Acquisition:	\$ 74,052.00	_
• Utility Relocations:	\$ 91,945.05	<u> </u>
• Construction (including const.	\$2,003,381.54	<u> </u>
traffic management):Construction Observation and Inspection:	\$ 100,169.08	_
TOTAL PROJECT COST	\$2,638,746.51	<u></u>
I. Expected Funding Source(s) (Hi earmarks, etc.) ATTACH ANY ADDITIONAL DOCUM Disposition (circle one): (1) Advance to S	MENTATION	CMAQ, Urban Systems, Fed/State
Disposition (en cie one). (1) Advance to a	mage 1 (2) Hold for Recol	isideration (3) sherve

Route	Minnesota Par	k Road		Parish: Tangipahoa
C.S.	none	Begin Log mile		End Log mile
		SE: Residential		-
		y a Native American T		
		so, which Tribe? No		
		into the Wetland Reservo, give the location		n?
	•	nown wetlands in the ar		
	•	Is the project impacti	ing or adjac	eent to any (if the answer is yes, list names and
locatio (Y or N	ns): N) Cemeteries	No		
,	N) Churches			
,	· -	No		
•	-			No
			•	
Section	n 4(f) issue: Is	the project impacting	or adjacen	t to any (if the answer is yes, list names and
locatio	ns):		-	
,	*	·		
	· -	No		
	· ·	ges No		
(Y or N	N) Historic Sites	No		
(Y or	N) Is the proje		strict or a n	on the National Register of Historic Places? national landmark district? (Y or N) If the ow:
		reatened or endangere cation. No		the area? (Y or N)
	he project impa	•	am protecte	ed by the Louisiana Scenic Rivers Act? (Y or
Are th		ant Trees as defined by	y EDSM I.1	.1.21 within proposed ROW? (Y or N) If so,
What	year was the exi	sting bridge built? <u>N/A</u>	4	
	ny waterways in terways: <u>No</u>	pacted by the project	considered	navigable? (Y or N) If unknown, state so, list
	ems? (If the answ	ver is yes, list names and ng Underground Storage	locations.) Tanks	ng DEQ and EPA databases for potential
	(Y or N) ERNS	SNo		
	(Y or N) Enfor	cement and Compliance	History	No

Underground Storage Tanks (UST): Are there any Gasoline Stations or other facilities that may have UST on or adjacent to the project? (Y or N) Yes
If so, give the name and location: Ryan's Deli – 43195 S. Range Road, Hammond, LA
Any chemical plants, refineries or landfills adjacent to the project? (Y or N) Any large manufacturing facilities adjacent to the project? (Y or N) Dry Cleaners? (Y or N) If yes to any, give names and locations: No, No, No
Oil/Gas wells: Have you checked DNR database for registered oil and gas wells? (Y or N) List the type and location of wells being impacted by the project. Yes – There are none.
Are there any possible residential or commercial relocations/displacements? (Y or N) How many? No
Do you know of any sensitive community or cultural issues related to the project? (Y or N) If so, explain No
Is the project area population minority or low income? (Y or N) No
What type of detour/closures could be used on the job? When necessary, partial street closure.
Did you notice anything of environmental concern during your site/windshield survey of the area? If so, explain below. No
Point of Contact
Phone Number
Date

General Explanation:

To adequately consider projects in Stage 0, some consideration must be given to the human and natural environment which will be impacted by the project. The Environmental Checklist was designed knowing that some environmental issues may surface later in the process. This checklist was designed to obtain basic information, which is readily accessible by reviewing public databases and by visiting the site. It is recognized that some information may be more accessible than other information. Some items on the checklist may be more important than others depending on the type of project. It is recommended that the individual completing the checklist do their best to answer the questions accurately. Feel free to comment or write any explanatory comments at the end of the checklist.

The Databases:

To assist in gathering public information, the previous sheet includes web addresses for some of the databases that need to be consulted to complete the checklist. As of February 2011, these addresses were accurate.

Note that you will not have access to the location of any threatened or endangered (T&E) species. The web address lists only the threatened or endangered species in Louisiana by Parish. It will generally describe their habitat and other information. If you know of any species in the project area, please state so, but you will not be able to confirm it yourself. If you feel this may be an issue, please contact the Environmental Section. We have biologist on staff who can confirm the presence of a species.

Why is this information important?

Land Use? Indicator of biological issues such as T&E species or wetlands.

Tribal Land Ownership? Tells us whether coordination with tribal nations will be required.

WRP properties? Farmland that is converted back into wetlands. The Federal government has a permanent easement which cannot be expropriated by the State. Program is operated through the Natural Resources Conservation Service (formerly the Soil Conservation Service).

Community Elements? DOTD would like to limit adverse impacts to communities. Also, public facilities may be costly to relocate.

Section 4(f) issues? USDOT agencies are required by law to avoid certain properties, unless a prudent or feasible alternative is not available.

Historic Properties? Tells us if we have a Section 106 issue on the project. (Section 106 of the National Historic Preservation Act) See http://www.achp.gov/work106.html for more details.

Scenic Streams? Scenic streams require a permit and may require restricted construction activities.

Significant Trees? Need coordination and can be important to community.

Age of Bridge? Section 106 may apply. Bridges over 50 years old are evaluated to determine if they are eligible for the National Register of Historic Places.

Navigability? If navigable, will require an assessment of present and future navigation needs and US Coast Guard permit.

Hazardous Material? Don't want to purchase property if contaminated. Also, a safety issue for construction workers if right-of-way is contaminated.

Oil and Gas Wells? Expensive if project hits a well.

Relocations? Important to community. Real Estate costs can be substantial depending on location of project. Can result in organized opposition to a project.

Sensitive Issues? Identification of sensitive issues early greatly assists project team in designing public involvement plan.

Minority/Low Income Populations? Executive Order requires Federal Agencies to identify and address disproportionately high and adverse human health and environmental effects on minority or low income populations. (Often referred to as Environmental Justice)

Detours? The detour route may have as many or more impacts. Should be looked at with project. May be unacceptable to the public.

Louisiana Governor's Office of Indian Affairs:

http://www.indianaffairs.com/tribes.htm

Louisiana Wetlands Reserve Program:

http://www.nrcs.usda.gov/programs/wrp/states/la.html

Community Water Well/Supply

http://sonris.com/default.htm

Louisiana Department of Wildlife and Fisheries – Wildlife Refuges

http://www.wlf.louisiana.gov/refuges

http://www.fws.gov/refuges/profiles/ByState.cfm?state=LA

http://www.fws.gov/refuges/refugelocatormaps/Louisiana.html

U.S. Fish & Wildlife Service – National Wetlands Inventory:

http://www.fws.gov/wetlands/

Louisiana State Historic Sites:

http://www.crt.state.la.us/parks/ihistoricsiteslisting.aspx

National Register of Historic Places (Louisiana):

http://nrhp.focus.nps.gov/natreghome.do?searchtype=natreghome

http://www.nationalregisterofhistoricplaces.com/la/state.html

National Historic Landmarks Program:

http://www.nps.gov/history/nhl/

Threatened and Endangered Species Databases:

http://www.wlf.louisiana.gov/wildlife/louisiana-natural-heritage-program

Louisiana Scenic Rivers:

http://www.wlf.louisiana.gov/wildlife/scenic-rivers

http://media.wlf.state.la.us/experience/scenicrivers/louisiananaturalandscenicriversdescriptions/

http://www.legis.state.la.us/lss/lss.asp?doc=104995

Significant Tree Policy (EDSM I.1.1.21)

http://notes1/ppmemos.nsf

(Live Oak, Red Oak, White Oak, Magnolia or Cypress, aesthetically important, 18" or greater in diameter at breast height and has form that separates it from surrounding or that which may be considered historic.)

CERCLIS (Superfund Sites):

http://www.epa.gov/superfund/sites/cursites/

http://www.epa.gov/enviro/html/cerclis/cerclis_query.html

ERNS - Emergency Response Notification System - Database of oil and hazardous substances spill

reports: http://www.epa.gov/region4/r4data/erns/index.htm

Enforcement & Compliance History (ECHO)

http://www.epa-echo.gov/echo/

DEQ – Underground Storage Tank Program Information:

http://www.deq.louisiana.gov/portal/tabid/2674/Default.aspx

Leaking Underground Storage Tanks:

http://www.deq.state.la.us/portal/tabid/79/Default.aspx

SONRIS – Oil and Gas Well Information & Water Well Information http://sonris.com/default.htm
Environmental Justice (minority & low income) http://www.fhwa.dot.gov/environment/ej2000.htm
Demographics http://www.census.gov/
FHWA's Environmental Website http://www.fhwa.dot.gov/environment/index.htm
Additional Databases Checked
Other Comments: