LA 1091 (Robert Boulevard) at Country Club Boulevard/John Slidell Park Roundabout Study RPC TASK SL.18:FY-18 UPWP, SPN: H.972275.1 The City of Slidell, St. Tammany Parish, Louisiana

STAGE 0 FEASIBILITY STUDY

PREPARED FOR

Regional Planning Commission 10 Veterans Memorial Boulevard New Orleans, Louisiana 70124

J.V. Burkes & Associates Surveying Engineering Environmental

> 1805 Shortcut Highway Slidell, Louisiana 70458 www.jvburkes.com

June 2018

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of policies of the RPC, the State or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

i

Table of Contents

1 - Intr	oductio	on	1
2 - Exis	ting Co	onditions	5
	2-1	Roadway Characteristics	5
	2-2	Existing Traffic Controls	
	2-3	Surrounding Land Use	7
	2-4	Traffic Data Collection	9
		2-4.1 7-Day, 24-Hour Traffic Volume Counts	9
		2-4.2 Vehicle Classification Counts	10
		2-4.3 Peak Hour Turning Movement Counts	11
		2-4.4 Spot Speed Study	11
		2-4.5 Crash History (3 Years)	13
	2-5	Level of Service and 95th Percentile Queue Length Analysis	15
3 – Rot	indabo	out Analysis	
	3-1	Conceptual Roundabout Layout Design	17
	3-2	Sidra Intersection Analysis	
	3-3	AutoTURN Analysis	
	3-4	VISSIM Modeling	
4 - Cor	nclusio	ns and Recommendations	22
	4-1	Existing Conditions (Findings)	
	4-2	Roundabout Analysis (Findings)	
	4-3	Recommended Roundabout Layout Design	

List of Figures

Figure 1 – Site location Map	2
Figure 2 – Aerial View of Project Study Area	
Figure 3 – Existing Intersection Layout	
Figure 4 – LA 1091 (Robert Boulevard) Typical Sections	5
Figure 5 – Country Club Boulevard & John Slidell Park Typical Sections	
Figure 6 – Surrounding Land Use	8
Figure 7 – Existing Peak Hour Traffic Counts	12
Figure 8 – Collision Diagram	14
Figure 9 – Conceptual Roundabout Layout Design	
Figure 10 – AutoTURN Analysis	20
Figure 11 – VISSIM Model Animation	21
Figure 12 – Recommended Roundabout Layout Design (Plan View)	
Figure 13 – Recommended Roundabout Layout Design (Geometric Details)	

Table of Contents (Continued)

List of Tables

Table 1 – 7-Day, 24-Hour Traffic Volume Counts	9
Table 2 – Vehicle Classification Counts (LA 1091 (Robert Boulevard))	
Table 3 – Spot Speed Study Results	11
Table 4 – Crash Table	
Table 5 – Level of Service (Existing Conditions)	
Table 6 – 95 th Percentile Queue Lengths (Existing Conditions)	16
Table 7 – Sidra Intersection Analysis	
Table 8A – Sidra Intersection Analysis Comparison Table (Build Year 2021)	25
Table 8B – Sidra Intersection Analysis Comparison Table (Build Year 2021)	26
Table 9A – Sidra Intersection Analysis Comparison Table (Design Year 2041)	27
Table 9B – Sidra Intersection Analysis Comparison Table (Design Year 2041)	
Table 10 – Summary of Estimated Quantities	

endix

1 - Introduction

This project was commissioned by the Regional Planning Commission to perform a Stage 0 Feasibility Study for a proposed roundabout at the intersection of LA 1091 (Robert Robert) @ Country Club Boulevard & John Slidell Park in the City of Slidell, St. Tammany Parish. The intersection is presently an unsignalized four-way intersection with two-way "Stop" signs controlling the Country Club Boulevard and John Slidell Park approaches. *A Study Location Map, Aerial View of Project Study Area, and Existing Intersection Layout drawing are provided in Figure 1, Figure 2, and Figure 3, respectively, on the following pages.*

The purpose of the study is to examine operational issues and analyze potential safety problems that have been identified by the City of Slidell at the intersection. A roundabout is here considered to address the need for operational improvements at the intersection and as a traffic calming measure to address excess speed in the corridor resulting in potentially unsafe conditions.

The intersection is under the jurisdiction of the Louisiana Department of Transportation and Development (DOTD). Consequently, the study must adhere to DOTD's Engineering Directives and Standards (EDSM No. VI.1.1.5 "Roundabouts") governing the requirements for justification, design, and approval for roundabouts on State highways. Requirements of this policy include the acquisition of site specific traffic data and operational analysis of the intersection that include, but are not limited to, the following key components.

- 7-day, 24-hour Traffic Volume Counts
- Vehicle Classification Counts
- Peak Hour Turning Movement Counts (Weekday A.M. and P.M., Weekend Midday)
- Spot Speed Study
- Crash History (3-years)
- HCM Level of Service Analysis (Existing Intersection)
- SIDRA Intersection Analysis (Proposed Roundabout)
- VISSIM microsimulation computer model
- AutoTURN truck turning analysis

The study includes preparation of a detailed conceptual drawing of the proposed roundabout layout design that follows to the greatest extent DOTD's Roadway Design Procedure and Details Manual for roundabouts. The concept drawing will consider anticipated right-of-way needs, horizontal and vertical geometry details, drainage information, and expected utility relocations.

Following is a description of the work performed for the Stage 0 Feasibility Study and recommendations for the proposed roundabout design.

FIGURE 1 - STUDY LOCATION MAP

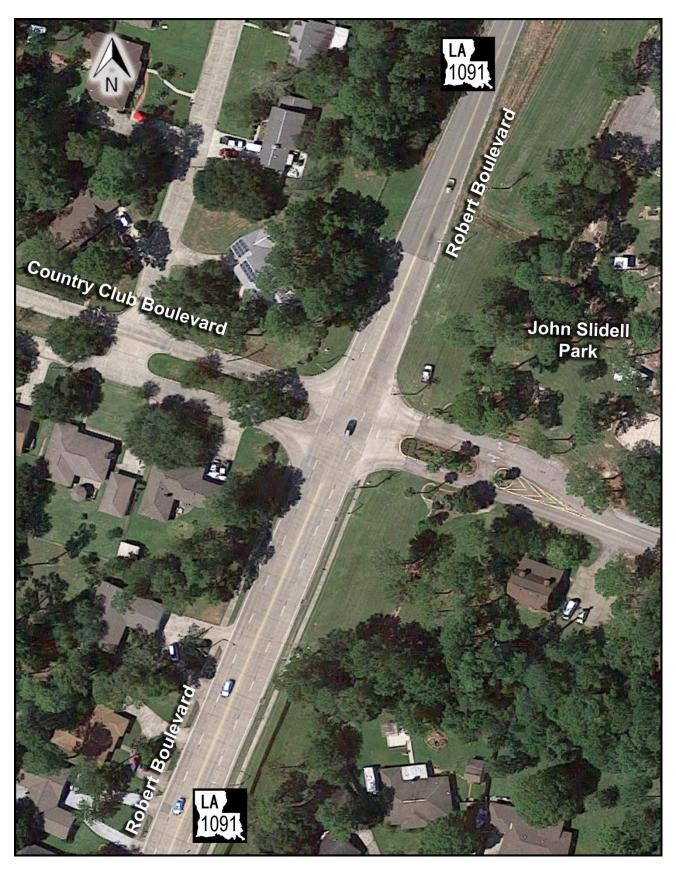
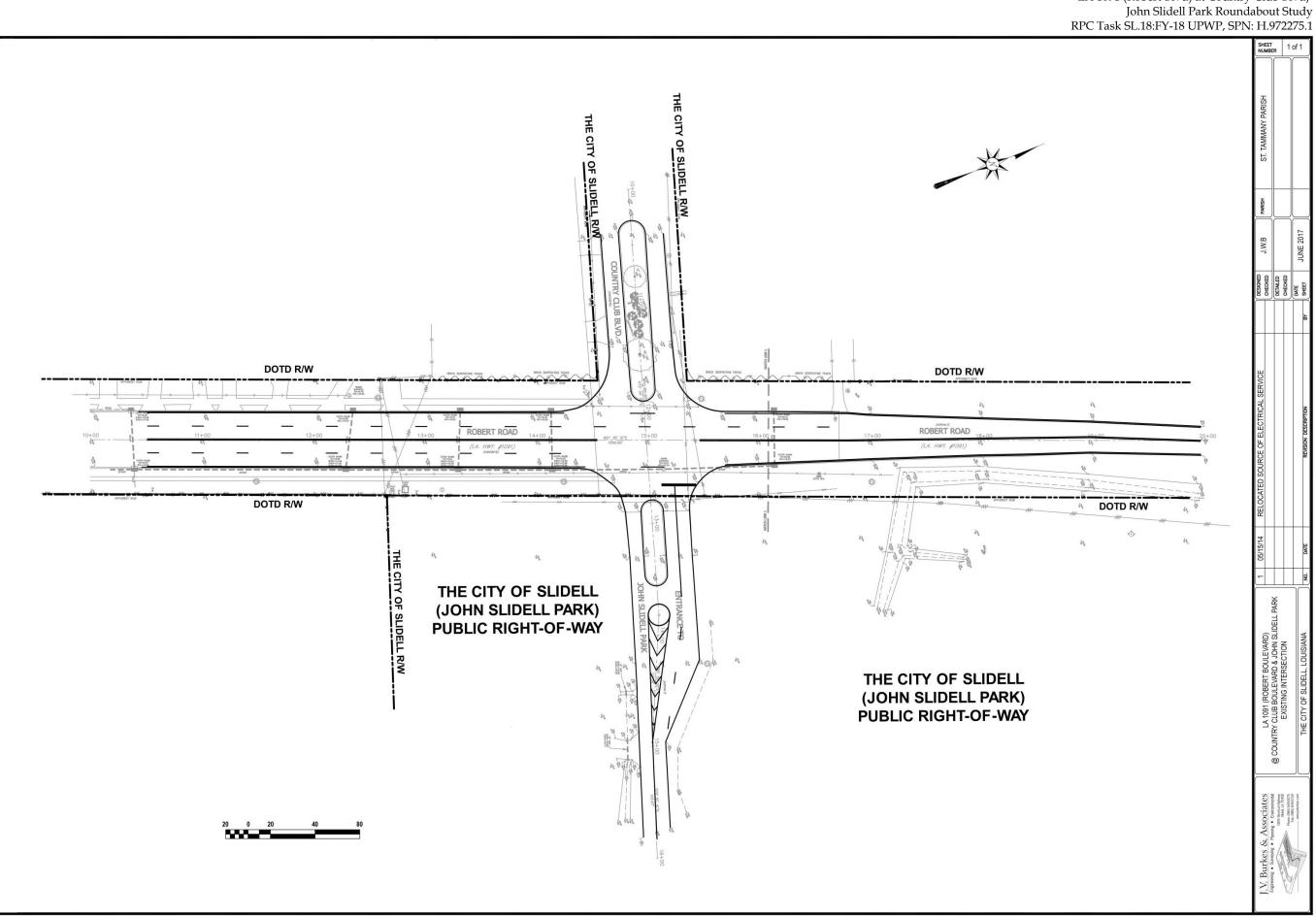



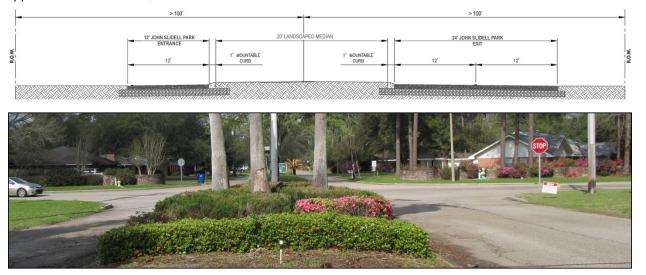
FIGURE 2 - AERIAL VIEW OF PROJECT STUDY AREA

2 – Existing Conditions

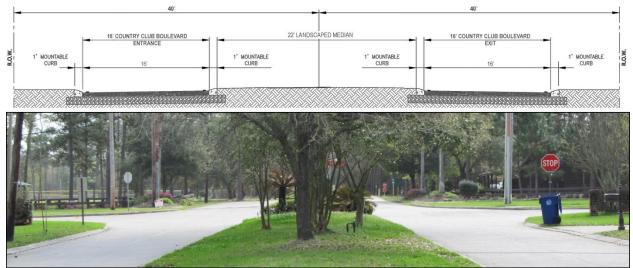
2-1 Roadway Characteristics

LA 1091 (Robert Boulevard) at the study intersection is a two-way, four-lane undivided concrete highway that runs generally north and south. Travel lanes are 12-ft. in width contained within an 80-ft. right-of-way. Drainage is provided by a curb (mountable) and gutter subsurface system that runs adjacent to the roadway. Sidewalks are provided along the LA 1091 (Robert Boulevard) south approach to the intersection and are separated from the roadway by a grass buffer.

Immediately north of the study intersection LA 1091 (Robert Boulevard) transitions to a twoway, two-lane asphalt highway at its overpass with the I-12 interstate. The sidewalk system installed along the southern approach of LA 1091 (Robert Boulevard) to the intersection terminates at the intersection and does not continue north. *Figure 4 below depicts the typical roadway sections on the LA 1091 (Robert Boulevard) north and south approaches to the intersection*.



LA 1091 (ROBERT BOULEVARD) SOUTH APPROACH


2-1 Roadway Characteristics (Continued)

The entrance/exit to John Slidell Park connects to the intersection from the east as a two-way divided asphalt roadway. One 12-ft. lane is provided for the entrance, while the exit provides two 12-ft. lanes consisting of a shared left-turn/through lane and an exclusive right-turn lane. A 20-ft. landscaped median with mountable curbs separates the entrance/exit lanes. Right-of-way is provided in excess of 100ft. Drainage is to the outside edge of the roadway to the natural ground (no curbs).

Country Club Boulevard serves a residential neighborhood and approaches the intersection from the west as a two-way, two-lane divided concrete roadway. Travel lanes are 16-ft. in width separated by a 22-ft. grass median within an 80-ft. right-of-way. Although constructed for use as one-lane, motorists routinely use the Country Club Boulevard approach as having two-lanes. Drainage is provided by a curb (mountable) and gutter subsurface system that runs adjacent to the roadway. No sidewalks are provided along the roadway. *Figure 5 below shows the typical roadway sections on the Country Club Boulevard and John Slidell Park east and west approaches to LA 1091 (Robert Boulevard)*.

JOHN SLIDELL PARK EAST APPROACH

COUNTRY CLUB BOULEVARD WEST APPROACH

FIGURE 5 – COUNTRY CLUB BOULEVARD & JOHN SLIDELL PARK TYPICAL SECTIONS

2-2 Existing Traffic Controls

The intersection of LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park is presently operated as a four-way, unsignalized intersection with "Stop" signs controlling the Country Club Boulevard and John Slidell Park approaches. LA 1091 (Robert Boulevard) is afforded free-flow operation at the intersection. Full-access turning movements (left-turn, thru, right-turn) are permitted on all four approaches to the intersection. Left-turns movements from LA 1091 (Robert Boulevard) occur from the inside shared left-turn/thru lane during gaps in the opposing traffic stream.

LA 1091 (Robert Boulevard) has a posted speed limit of 40 miles per hour, while Country Club Boulevard is posted at 20 miles per hour and John Slidell Park roadways are posted for 15 miles per hour speed limit.

2-3 Surrounding Land Use

Land use along LA 1091 (Robert Boulevard) within the immediate vicinity of Country Club Boulevard and John Slidell Park is mixed residential and recreational. The northeast and southeast quadrants of the intersection are undeveloped public green spaces owned by the City of Slidell and part of John Slidell Park. The northwest and southwest quadrants are part of Country Club Subdivision and are occupied by single-family detached homes in each quadrant.

The nearest driveway connection along LA 1091 (Robert Boulevard) is located approximately 195-ft. south of the study intersection on the west side of the highway and serves a single-family detached home. No active driveway connections are provided north along LA 1091 (Robert Boulevard) between the intersection and the I-12 overpass. The nearest driveway connection along Country Club Boulevard is for a single-family detached home and is located along the south side of the roadway approximately 75-ft. from the intersection. A driveway connection to an office and maintenance building for John Slidell Park is located along the south side of the park approximately 260-ft. from the study intersection. *Figure 6 on the following page provides pictures of the green spaces and residential developments located in the four quadrants of the LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park intersection.*

NORTHEAST QUADRANT

NORTHWEST QUADRANT

SOUTHEAST QUADRANT

SOUTHWEST QUADRANT

2-4 Traffic Data Collection

The LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park intersection is under the jurisdiction of the Louisiana Department of Transportation and Development (DOTD). DOTD's policy for the justification and approval of roundabouts (EDSM No. VI.1.1.5 "Roundabouts") requires the collection of site specific traffic data consisting of the following items.

- 7-Day, 24-Hour Traffic Volume Counts
- Vehicle Classification Counts
- Peak Hour Turning Movement Counts (Weekday A.M. and P.M., Weekend Midday)
- Spot Speed Study
- Crash History (3-years)

Following is a description of the results of this traffic data collection effort for the study intersection. *Raw traffic data materials are provided in the Appendix.*

2-4.1 7-Day, 24-Hour Traffic Volume Counts

7-Day, 24-Hour Traffic Volume Counts were conducted on all four approaches to the intersection. These volume counts were collected in fifteen minute intervals with hourly subtotals. The counts were used to determine if the corridor experiences any unique traffic patterns and to target periods to perform Peak Hour Turning Movement Counts. *Table 1 shown below provides the daily totals for each approach to the intersection during each day of the week.*

	7-Day, 24-Hour Traffic Volume Counts								
Weekday	LA 1091 (Robert Boulevard) (NB & SB)			Country & Joh	Grand				
	NB	SB	Total	EB	WB	Total	Total		
Monday	7345	7902	15247	1188	348	1536	16783		
Tuesday	7814	7991	15805	1305	481	1786	17591		
Wednesday	7757	8000	15757	1263	502	1765	17522		
Thursday	7878	8326	16204	1279	521	1800	18004		
Friday	8088	10707	18795	1397	261	1658	20453		
Weekend									
Saturday	6640	8132	14772	1250	492	1742	16514		
Sunday	5077	6507	11584	820	192	1012	12596		

TABLE 1 - 7-DAY, 24-HOUR TRAFFIC VOLUME COUNTS

A review of the table above shows typical roadway traffic patterns. The counts indicate the following Average Daily Traffic for LA 1091 (Robert Boulevard).

LA 1091 (Robert Boulevard)

15,900 Vehicles per Day (ADT)

2-4.2 Vehicle Classification Counts

Vehicle Classification Counts were conducted on all approaches to the intersection. As may be expected, the Country Club Boulevard and John Slidell Park approaches see nominal amounts of heavy vehicle traffic. Results for the LA 1091 (Robert Boulevard) vehicle classifications are shown in the table below. *Table 2 below provides the LA 1091 (Robert Boulevard) vehicle classification counts broken down into the FHWA thirteen categories.*

FH	WA Vehicle Classifications	Percentage Breakdown
1. Motorcycles 2 axles, 2 or 3 tires	8	0.2%
2. Passenger Cars 2 axles, can have 1- or 2-axle trailers		74.3%
3. Pickups, Panels, Vans 2 axles, 4-tire single units Can have 1 or 2 axle trailers		20.7%
4. Buses 2 or 3 axles, full length		1.4%
5. Single Unit 2-Axle Trucks 2 axles, 6 tires (dual rear tires), single-unit		3.2%
6. Single Unit 3-Axle Trucks 3 axles, single unit		0.0%
7. Single Unit 4 or More-Axle Trucks 4 or more axles, single unit		0.0%
8. Single Trailer 3- or 4-Axle Trucks 3 or 4 axles, single trailer		0.2%
9. Single Trailer 5-Axle Trucks 5 axles, single trailer		0.0%
10. Single Trailer 6 or More-Axle Trucka 6 or more axles, single trailer		0.0%
11. Multi-Trailer 5 or Less-Axle Trucks 5 or less axles, multiple trailers		0.0%
12. Multi-Trailer 6-Axle Trucks 6 axles, multiple trailers.		0.0%
13. Multi-Trailer 7 or More-Axle Trucks 7 or more axles, multiple trailers		0.0%

TABLE 2 - VEHICLE CLASSIFICATION COUNTSLA 1091 (ROBERT BOULEVARD)

A review of the table indicates the following percentage of Heavy Vehicle Traffic (Classification 4 or higher)

LA 1091 (Robert Boulevard)

4.8% Heavy Vehicles

It should be noted that of this percentage of heavy vehicles, only 0.2% consisted of large trucks with 3-axles or higher.

2-4.3 Peak Hour Turning Movement Counts

Peak Hour Turning Movement Counts of existing traffic were conducted at the LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park intersection during the weekday A.M. and P.M. peak hours and weekend midday peak hour. The 24-hour traffic volume counts taken on Tuesday, Wednesday, and Thursday were used to target the weekday peak periods to conduct turning movement counts, while the Saturday and Sunday 24-hour traffic volume counts were used to identify the weekend peak period. The peak hours identified corresponded with those seen at other nearby intersections where counts were collected by this firm. *Figures 7 on the following page contains the results of the weekday and weekend peak hour traffic counts.*

These traffic counts were collected using current video technologies to insure the most accurate traffic data acquisition and provide visual chronicles of the actual operation of intersections and roadways. This allows for a deeper analysis of the transportation system as well as video archives for future evaluations. Using these video captures together with personnel in-field observations, maximum queue length observations were noted for the four approaches to the intersection. Queue lengths of two vehicles would occasionally occur within the inside shared left-turn/through lanes of free-flowing LA 1091 (Roberts Boulevard) as motorist waited for gaps in the opposing stream of traffic to make left-turns onto Country Club Boulevard or into John Slidell Park. Both Country Club Boulevard and the John Slidell Park exit would see queue lengths of three vehicles on their "Stop" sign approaches. Although traffic volumes levels were considered moderate on these side street approaches, there appeared to be a hesitancy on the part of some motorists as they attempted to judge acceptable gaps to enter the free-flowing traffic streams of LA 1091 (Robert Boulevard), thus causing increase delay times. This "second guessing" appears to be the result on the merge/diverge condition along LA 1091 (Robert Boulevard) just north of the intersection producing unpredictable lane changes in the immediate vicinity of the intersection.

2-4.4 Spot Speed Study

A Spot Speed Study was conducted along the northbound and southbound roadways of LA 1091 (Robert Boulevard) following the procedures outlined in DOTD's EDSM VI.1.1.1 and Traffic Engineering Maunal (Section 20.2). The speed limit along this highway within the study area is presently posted at 40 mile per hour. *Table 3 below provides a summary of the major findings of the Spot Speed Study*.

	obert Boulevard) <u>rthbound</u>	LA 1091 (Robert Boulevard) <u>Southbound</u>		
Posted			Speed Study Results	
Speed Limit	85th Percentile Speed	Speed Limit	85th Percentile Speed	
SPEED LIMIT	51 mph	SPEED LIMIT	53 mph	
40	Mean (Average) Speed	40	Mean (Average) Speed	
	46 mph		48 mph	

TABLE 3 - SPOT SPEED STUDY RESULTS

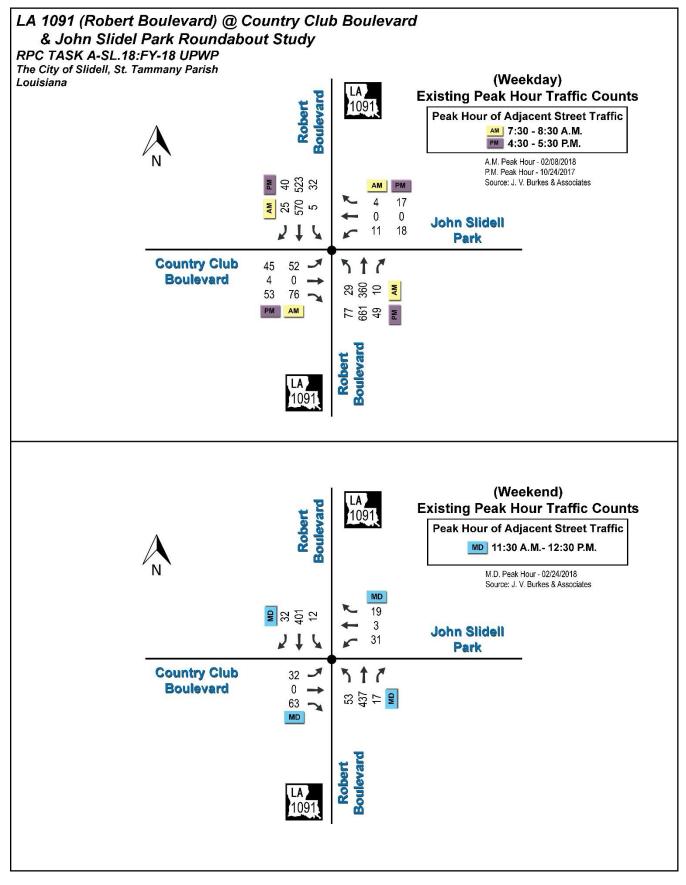


FIGURE 7 - EXISTING PEAK HOUR TRAFFIC COUNTS

2-4.5 Crash History (3 Years)

A Crash History of the intersection was compiled encompassing the past three years (2014, 2015, and 2016) of available authorized crash data. Four types of crashes were recorded at and within the immediate vicinity of the intersection during this three year time period. *Table 4 presented below provides a summary of the type and number of crashes at and within the immediate vicinity of the study intersection, and those considered correctible with the installation of a roundabout.*

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park						
Milepoint 2.01 - 2.04		2014	2015	2016	Total Crashes	Correctible?
	Left Turn	1	1	4	6	Correctible
Crash Types	Rear End	0	0	3	3	Non-Correctible
Clash Types	Right Angle	1	2	3	6	Correctible
	Side Swipe	0	0	1	1	Non-Correctible
	Total Crashes	2	3	11	16	
Crash Summary	Fatal Crashes	0	0	0	0	
	Injury Crashes	1	1	6	8	

TABLE 4 - CRASH TABLE

A close review of the accident records revealed that of the 6 crashes encoded during this threeyear period as "Right Angle" crashes, 5 actually involved a vehicle attempting to make a leftturn and 1 making a right-turn. Only 1 "Right-Angel" crash involved a straight crossing vehicle. This inconsistency is addressed on the Collision Diagram prepared for the intersection. *Figure 8 on the following page provides a Collision Diagram for the intersection during the three year time period specified.*

A review of the Crash Table above indicates the following number of "correctible crashes" (Head On, Right Angle, Left Turn) with the installation of a roundabout.

Number of "Correctible Crashes" with Roundabout

12 Crashes (75% of Total)

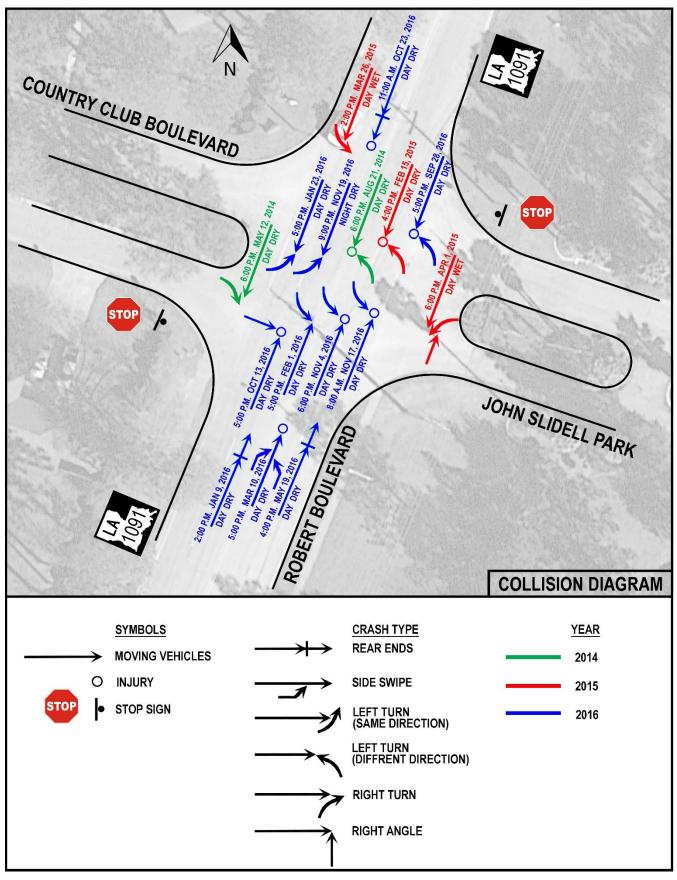


FIGURE 8 - COLLISION DIAGRAM

2-5 Level of Service and 95th Percentile Queue Length Analysis

A Level of Service (LOS) analysis was performed on the intersection of LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park during the weekday A.M. and P.M. peak hours and weekend Midday peak hour. The analysis is based on existing highway configuration, traffic controls, and collected traffic counts. Using Sidra Intersection (Version 6.1) software, volume to capacity (v/c) ratios, delay times (seconds per vehicle) and corresponding Level of Service (LOS) designations were calculated for each approach lane, each approach, and for the overall intersection. *The results of the capacity analysis of existing conditions* (3-Year Build) are presented below in Table 5.

Sidra Intersection (Version 6.1) was also used to calculate the 95th Percentile Queue Lengths for each approach lane and each directional approach in total. *Table 6 on the following page provides the results of the 95th Percentile Queue Length analysis during the weekday A.M. and P.M. peak hours and weekend midday peak hour.*

		Ammonth		.M. Peak Ho	ur	P.M. Peak Hour		
Intersection		Approach Movement		DELAY	LOS	v/c	DELAY	LOS
	wovement		Ratio	(Sec/Veh)	103	Ratio	(Sec/Veh)	103
		LT/Thru	0.223	4.2	А	0.450	5.4	А
	NB	Thru/RT	0.045	0.0	А	0.090	0.0	А
		Approach	0.223	0.8	А	0.450	1.5	А
	SB	LT/Thru	0.310	2.4	А	0.335	6.6	А
		Thru/RT	0.062	0.0	А	0.067	0.0	А
LA 1091 (Robert Boulevard) (NB & SB)		Approach	0.310	0.1	А	0.335	1.1	А
@ Country Club Boulevard (EB) & John Slidell Park (WB)		LT/Thru	0.635	77.8	F	1.917	656.8	F
Two-Way Stop	EB	RT	0.289	15.3	С	0.174	11.0	В
		Approach	0.635	40.8	Е	1.917	318.7	F
		LT/Thru	0.176	55.7	F	0.876	322.4	F
	WB	RT	0.009	5.0	А	0.091	18.0	С
		Approach	0.176	41.4	Е	0.876	176.3	F
	Inte	rsection LOS	0.635	5.4	А	1.917	26.4	D

Existing (Weekday)

Existing (Weekend)

			Midday Peak Hour			
Intersection		approach Iovement	v/c	v/c DELAY		
	14.	lovement	Ratio	Ratio (Sec/Veh)		
		LT/Thru	0.282	2.8	А	
	NB	Thru/RT	0.056	0.0	А	
		Approach	0.282	0.7	А	
		LT/Thru	0.235	2.8	А	
	SB	Thru/RT	0.047	0.0	А	
LA 1091 (Robert Boulevard) (NB & SB)		Approach	0.235	0.2	А	
@ Country Club Boulevard (EB) & John Slidell Park (WB)		LT/Thru	0.328	45.5	Е	
Two-Way Stop	EB	RT	0.147	6.8	А	
		Approach	0.328	19.9	С	
		LT/Thru	0.372	52.0	F	
	WB	RT	0.050	7.3	А	
		Approach	0.372	34.9	D	
	Inter	rsection LOS	0.372	3.8	А	

TABLE 5 - LEVEL OF SERVICE ANALYSIS(EXISTING CONDITIONS - 3 YEAR BUILD)

Existing (Weekday)

		A	A.M. Peak Hour	P.M. Peak Hour
Intersection	Approach Movement		95th Percentile Queue Length (ft.)	95th Percentile Queue Length (ft.)
		LT/Thru	12.7	50.9
	NB	Thru/RT	0.0	0.0
		Approach	12.7	50.9
	SB	LT/Thru	1.9	23.9
LA 1091 (Robert Boulevard) (NB & SB)		Thru/RT	0.0	0.0
@ Country Club Boulevard (EB)		Approach	1.9	23.9
& John Slidell Park (WB)	с	LT/Thru	70.1	352.1
Two-Way Stop	EB	RT	32.1	17.6
		Approach	70.1	352.1
		LT/Thru	14.5	80.5
	WB	RT	0.9	8.2
		Approach	14.5	80.5

Existing (Weekend)

		A 1	Midday Peak Hour
Intersection		Approach ⁄Iovement	95th Percentile Queue Length (ft.)
		LT/Thru	18.7
LA 1091 (Robert Boulevard) (NB & SB)	NB	Thru/RT	0.0
		Approach	18.7
	SB	LT/Thru	4.5
		Thru/RT	0.0
@ Country Club Boulevard (EB)		Approach	4.5
& John Slidell Park (WB)	EB	LT/Thru	31.4
Two-Way Stop		RT	15.9
		Approach	31.4
		LT/Thru	35.6
	WB	RT	5.1
		Approach	35.6

TABLE 6 - 95TH PERCENTILE QUEUE LENGTHS(EXISTING CONDITIONS - 3 YEAR BUILD)

3 – Roundabout Analysis

To initiate the process of determining an appropriate roundabout layout for the LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park intersection, the collected Peak Hour Turning Movement Counts were utilized to perform preliminary SIDRA Intersection roundabout analysis. This initial evaluation was conducted to determine the proper number of lanes to employ at the roundabout to meet current (3-Year Build) and future (20-Year Design) traffic demands.

Based on these preliminary analyzes, a single-lane roundabout was gauged to be sufficient to handle current and future traffic loads. A Conceptual Roundabout Layout Design was then developed for the intersection.

Additional Sidra Intersection analyzes were performed to confirm the Conceptual Roundabout Layout Design would accommodate future traffic volume levels and expected turning movement characteristics. This was followed by utilization of AutoTURN computer software to demonstrate the proposed roundabout layout can accommodate a WB-67 truck, and preparation of a VISSIM computer microsimulation model to show an animation of the anticipated function of the roundabout.

Following is a description of the Conceptual Roundabout Layout Design and results of the analyzes.

3-1 Conceptual Roundabout Layout Design

A detailed conceptual drawing was prepared on an aerial photograph showing the proposed roundabout layout design. The geometric features of the roundabout followed to the greatest extent possible the criteria outlined in LADOTD Roadway Design Procedure and Details Manual. Preparation of the layout involved attention to existing public right-of-way's, nearby driveway connections, utility locations, sidewalk installations, and drainage systems. Key considerations and designed elements influencing the roundabout layout included the following.

- Single lane roundabout with an inscribed circle of 130 ft. in diameter.
- Use of public (State and City) right-of way only.
- Utilization of the existing two lanes on the LA 1091 (Robert Boulevard) northbound approach and the John Slidell Park exit westbound approach.
- Crosswalk on the LA 1091 (Robert Boulevard) northbound approach connecting the existing sidewalk system.

Figure 9 on the following page provides the Conceptual Roundabout Layout Design resulting from this process.

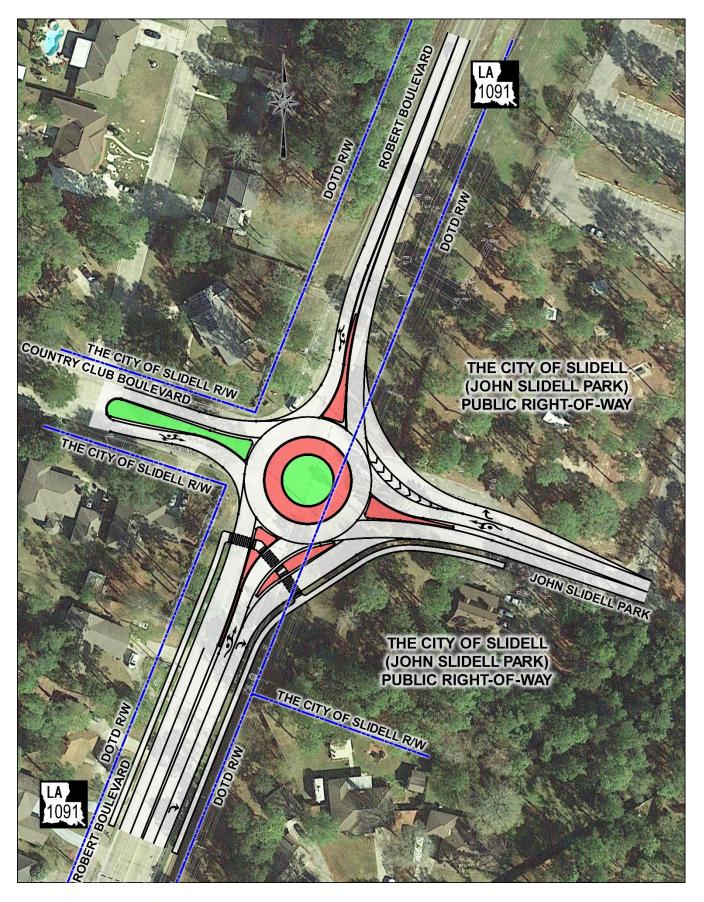


FIGURE 9 - CONCEPTUAL ROUNDABOUT LAYOUT DESIGN

3-2 Sidra Intersection Analysis

Sidra Intersection computer software was used to determine the volume to capacity (v/c) ratio, level of service, and other key parameters for the conceptual roundabout layout design. The Sidra Intersection software settings followed the requirements set forth in the DOTD Roundabout Analysis Brochure.

Three scenarios were analyzed for the intersection as follows. They were the Build Year (3 years from submittal of traffic study), Design Year (20-year design life), and Practical Capacity (year which capacity is reached). Starting with the collected peak hour traffic counts, a traffic growth rate of 0.8% was projected for the LA 1091 (Robert Boulevard) corridor as provided by the Regional Planning Commission transportation growth models. This same 0.8% growth rate was applied to John Slidell Park. Country Club Subdivision has reached its maximum occupancy, so no additional traffic growth was projected for Country Club Boulevard.

The percent of heavy truck traffic along LA 1091 (Robert Boulevard) was coded as 4.8%. This corresponds to the collected Vehicle Classification Counts for heavy vehicles. Projected truck traffic is considered nominal along Country Club Boulevard and John Slidell Park.

Weekday	V/C	Average Delay (Sec/Veh)	LOS	Queue Distance (ft.)	Build Year (3 Years)
A.M. Peak Hour	0.632	1.3	А	172.5	2021
P.M. Peak Hour	0.691	1.9	А	209.7	2021
Weekend					
Midday Peak Hour	0.496	1.2	А	100.5	2021
147 1 1	NUC	Average	LOG	Queue	Design Year

Table 7 below presents the findings of the Sidra Intersection analysis for the Conceptual Roundabout Layout Design.

Weekday	V/C	Average Delay (Sec/Veh)	LOS	Queue Distance (ft.)	Design Year (23 Years)	
A.M. Peak Hour	0.674	1.3	А	201.0	2041	
P.M. Peak Hour	0.730	1.9	А	241.0	2041	
Weekend						
Midday Peak Hour	0.526	1.2	А	112.9	2041	

Weekday	V/C	Average Delay (Sec/Veh)	LOS	Queue Distance (ft.)	Practical Capacity
A.M. Peak Hour	0.835	1.8	А	403.5	> 50 Years
P.M. Peak Hour	0.900	4.1	А	510.6	> 50 Years
Weekend					
Midday Peak Hour	0.654	1.5	А	173.0	> 50 Years

 TABLE 7 - SIDRA INTERSECTION ANALYSIS

3-3 AutoTURN Analysis

An AutoTURN software analysis was performed to demonstrate that the proposed Conceptual Roundabout Layout Design can accommodate a WB-67 truck. Various truck turning movement templates were tested for the different approaches to the intersection. *Electronic copies of the AutoTURN computer files are provided with the report. Figure 10 below provides an example of an AutoTURN turning movement analysis for WB-67 trucks traveling through the intersection along LA 1091 (Robert Boulevard).*

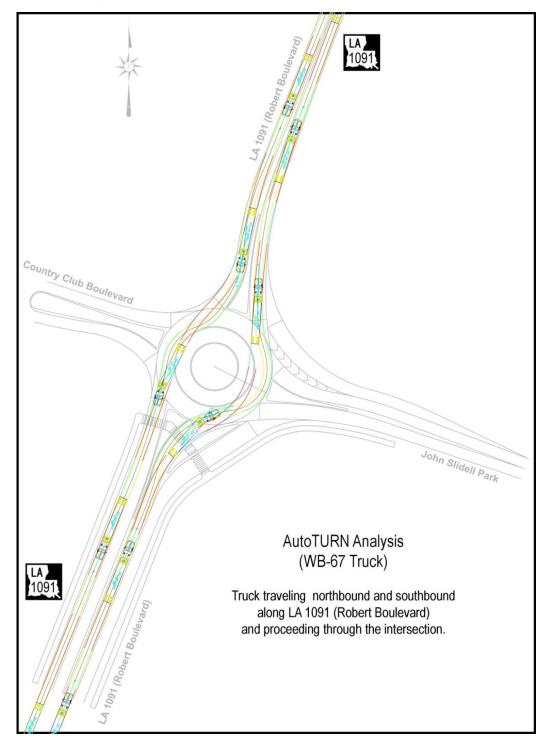
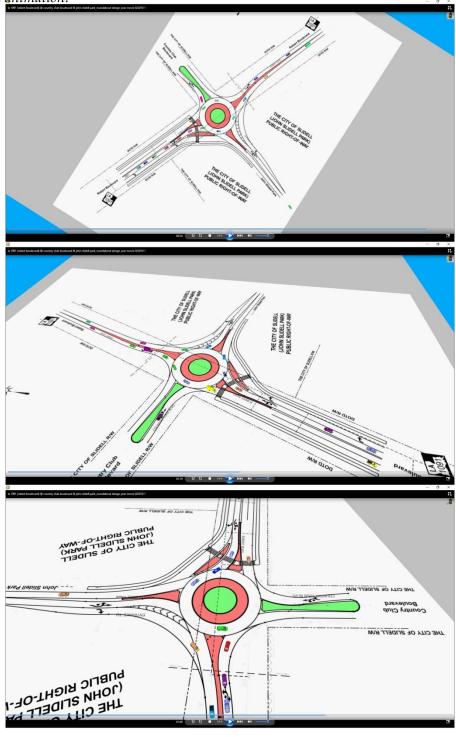



FIGURE 10 – AUTOTURN ANALYSIS LA 1091 (ROBERT BOULEVARD) THROUGH MOVEMENT

3-3 VISSIM Modeling

A VISSIM computer software microsimulation was prepared to show an animation of the anticipated function of the roundabout. Models were created to check the three scenarios evaluated during the Sidra Intersection analysis and calibrated following industry standards. The VISSIM simulation models revealed efficient operation of the Conceptual Roundabout Layout Design and corroborated the results of the Sidra Intersection analysis. *Electronic copies of the VISSIM computer files are provided with the report. Figure 11 below shows screen shots of the VISSIM model animation.*

4 – Conclusions and Recommendations

This Stage 0 Feasibility Study was conducted to determine the suitability of installing a roundabout at the presently unsignalized four-way intersection of LA 1091 (Robert Robert) @ Country Club Boulevard/John Slidell Park in the City of Slidell, St. Tammany Parish. Traffic is controlled at the existing intersection with "Stop" signs for the Country Club Boulevard and John Slidell Park side-street approaches, while LA 1091 (Robert Boulevard) is allowed free-flow operation.

Development surrounding the intersection is mixed residential and recreational. The northwest and southwest quadrants contain homes that are part of the fully-developed Country Club Subdivision. The northeast and southeast quadrants are undeveloped public green spaces owned by the City of Slidell and serve as the entrance/exit to John Slidell Park. The park offers baseball fields and areas for leisure activities and sees routine local activity during the weekday afternoons and all day on Saturdays and Sundays. On occasions the park hosts special events such as large baseball tournaments that bring visitors from outside the city.

The LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park intersection is under the jurisdiction of the Louisiana Department of Transportation and Development (DOTD). This study adhered to DOTD's Engineering Directives and Standards (EDSM No. VI.1.1.5 "Roundabouts") governing the requirements for the study of potential roundabout locations.

4.1 Existing Conditions (Findings)

DOTD's policy required the collection of specific types of traffic counts as well as conducting a speed study, reviewing recent crash history, and performing a HCM Level of Service analysis. Following are key findings from the traffic data collection and analysis of existing conditions.

- <u>7-day, 24-hour Traffic Volume Counts</u> The volume counts indicates an Average Daily Traffic (ADT) of 15,900 vehicles per day along LA 1091 (Robert Boulevard) and typical traffic patterns seen in the nearby area.
- <u>Vehicle Classification Counts</u> Classification counts revealed 4.8% heavy vehicle use along LA 1091 (Robert Boulevard) of which 0.2 % consisted of large trucks with 3-axles or higher. The side street approaches saw negligible heavy vehicle use.
- <u>Peak Hour Turning Movement Counts</u> Peak hour counts showed the intersection experiences heaviest traffic demands during the weekday P.M. Peak Hour. Weekend peak hour traffic varies depending on events occurring at the park, but typically sees the lowest levels of the week.
- <u>Spot Speed Study</u> Spot speed studies conducted along the LA 1091 (Robert Boulevard) free-flowing approaches to the intersection revealed 85th percentile speeds exceeding the posted speed limit (40 mph) by more than 10 mph.
- <u>Crash History (3-years)</u> A review of the intersection crash history during the last 3 years (2014 2016) indicates that of the total 18 recorded crashes, 12 (75%) are "correctible crashes" with the installation of a roundabout. Injuries were involved in 8 of the crashes. No fatalities were recorded.

4.1 Existing Conditions (Findings) (Continued)

• <u>Sidra Intersection Analysis</u> – Results of the Sidra Intersection analysis indicates the Country Club Boulevard and John Slidell Park side-street approaches both experience LOS F during the weekday P.M. peak hour.

Noteworthy during field observations was the behavior of some motorists on the "Stop" sign approaches of Country Club Boulevard and John Slidell Park who desired to turn left onto LA 1091 (Robert Boulevard). It appeared they would have difficulty at times judging acceptable gaps in the oncoming traffic streams of LA 1091 (Robert Boulevard). This would result in hesitancy or "second guessing" before making their movement. This appeared to be a result of the merge/diverge condition along LA 1091 (Robert Boulevard) just north of the intersection producing unpredictable lane changes in the immediate vicinity of the intersection.

A review of the hourly subtotals of the 7-day, 24-Hour Traffic Volume Counts reveals that traffic volume levels on the higher-volume minor-street approach (Country Club Boulevard) fail to meet DOTD's principal warrant (Warrant 1A "Eight-hour Vehicular Volume") for a traffic signal for any hour throughout the week (see EDSM No: VI.3.1.6 "Traffic Signal"). In addition, evaluation of the collected traffic data indicates the intersection fails to meet all the criteria to fulfill traffic signal Warrant 7 "Crash Experience". A traffic signal installation is therefore not considered a viable traffic control alternative for this intersection.

Consideration was also given to a Multi-Way Stop application. However, as noted in the MUTCD (Section 2B.07), "Multi-way stop control is used where the volume of traffic on the intersecting roads is approximately equal." An examination of the 7-day, 24-hour Traffic Volume Counts show that traffic volume along the free-flowing approaches of LA 1091 (Robert Boulevard) accounts for approximately 90% of all traffic seen at the intersection. Moreover, combined vehicular, pedestrian, and bicycle volumes from the minor street approaches fall well short of the minimum volume guidelines specified in the MUTCD. Therefore, a Multi-Way Stop Application is not considered a proper traffic control measure for this intersection.

4.2 Roundabout Analysis (Findings)

Using the collected Peak Hour Turning Movement Counts, SIDRA Intersection analyzes were conducted to develop a Conceptual Roundabout Layout Design that would meet current (3-Year Build) and projected future (20-Year Design) traffic demands and turning movement characteristics.

Key considerations in the development of the conceptual roundabout layout design were a desire to use available public rights-of-way (State and local) and avoid the acquisition of additional private properties. In addition, the layout effort was mindful of nearby driveway connections, utility locations, sidewalk installations, and drainage systems.

4.2 Roundabout Analysis (Findings) - (Continued)

The Sidra Intersection analyzes revealed a single-lane roundabout was sufficient to meet the current and future traffic demands. The concept design also incorporated bypass lanes on the northbound and westbound approaches to the roundabout for exclusive right-turn movements and a pedestrian crosswalk on the northbound approach connecting the existing sidewalks.

In addition to the roundabout accommodating both current and future traffic demands, the roundabout will have the benefit of controlling speeds along the LA 1091 (Robert Boulevard) corridor and reducing accidents currently experienced at the intersection. As noted earlier, the spot speed studies revealed the 85 percentile speed exceeds the posted speed limit by 10 mph or greater and 75% of existing accidents are considered "correctible crashes" with a roundabout.

The Sidra Intersection analysis indicates the Country Club Boulevard and John Slidell Park sidestreet approaches will see significant reductions in delays with the installation of a roundabout while having limited impact on the efficient flow of traffic along LA 1091 (Robert Boulevard). For one example, during the P.M. peak hour for the Build Year (2021), existing level of service for both side street approaches will go from an existing LOS F to a LOS A. All other approaches to the roundabout will also experience LOS A. *Tables 8A & B and 9A & B on the following pages provide side-by-side comparisons of the Sidra Intersection analyzes for the Build Year (2021) and Design Year (2041), respectively, during the peak hours for the existing intersection (Two-Way Stop) and proposed roundabout*.

				1	A.M. PEAK HO	UR (WEEKDAY)							
		Intersection LO)S	In	tersection Dela	y (s)		Analysis Yea	r					
Existing (Two-Way Stop)		А			5.4			Build Year (202	1)					
Roundabout		А			1.3		Build Year (2021)							
		Appro	ach LOS				Approacl	n v/c Ratio						
	LA 1091 (Rob	ert Boulevard)	Country Club/	John Slidell Park	1	LA 1091 (Rob	ert Boulevard)	Country Club	/John Slidell Park					
	NB	SB	EB	WB		NB	SB	EB	WB					
Existing (Two-Way Stop)ARoundaboutARoundaboutALA 1091 (Robert Boulevard)NBSBExisting (Two-Way Stop)AAARoundaboutAAARoundaboutAAAImage: A state of the state		E	Е		0.223	0.310	0.635	0.176						
Roundabout	A	A	A	A		0.358	0.632	0.242	0.016					
						Delay ((sec/veh)							
		·	,		1 (Robert Boulev	,		try Club Boulev			nn Slidell Park -			
			Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall		
			0.8	2.4	0.0	0.1	77.8	15.3	40.8	55.7	5.0	41.4		
Roundabout	0.5	0.7	0.5	0.8	0.8	0.8	5.7	5.7	5.7	2.5	4.3	2.9		
						95th Percentile (Queue Length (f	't)						
		<u>`</u>			1 (Robert Boulev	,		try Club Boulev			nn Slidell Park -			
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall		
	0.0000	A 102233.00	12.7	1.9	0.0	1.9	70.1	32.1	70.1	14.5	0.9	14.5		
Roundabout	69.4	1.7	69.4	172.5	172.5	172.5	35.1	35.1	35.1	2.1	0.9	2.1		
]	P.M. PEAK HO	UR (WEEKDAY))							
		Intersection LO)S	In	tersection Dela	y (s)		Analysis Yea	r					
Existing (Two-Way Stop)		D			26.4			Build Year (202	1)					
Roundabout		А			1.9			Build Year (202	1)					
		Appro	ach LOS				Approacl	h v/c Ratio						
	LA 1091 (Rob	ert Boulevard)	Country Club/	John Slidell Park	1	LA 1091 (Rob	ert Boulevard)	Country Club	/John Slidell Park					
	NB	SB	EB	WB		NB	SB	EB	WB					
	А	А	F	F		0.450	0.335	1.917	0.876					
Roundabout	А	А	A	A		0.691	0.674	0.198	0.040					
						Delay ((sec/veh)							
	LA 1091	(Robert Boulev	vard) - NB	LA 109	1 (Robert Boulev	vard) - SB	Coun	try Club Boulev	ard - EB	Joł	nn Slidell Park -	WB		
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall		
Existing (Two-Way Stop)	No. 2011 XXXX 232	2019/96/05	1.5	6.6	0.0	1.1	656.8	11.0	318.7	322.4	18.0	176.3		
Roundabout	1.2	1.0	1.2	1.8	1.7	1.8	5.4	5.4	5.4	6.1	6.9	6.5		
						95th Percentile (Queue Length (f	't)						
	LA 1091	(Robert Boulev	vard) - NB	LA 109	1 (Robert Boulev	vard) - SB	Coun	try Club Boulev	ard - EB	Joh	n Slidell Park -	WB		
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall		
										20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Existing (Two-Way Stop)	50.9 209.7	0.0 8.8	50.9 209.7	23.9 186.8	0.0 186.8	23.9 186.8	352.1 29.2	17.6 29.2	352.1 29.2	80.5 6.4	8.2 5.9	80.5 6.4		

TABLE 8A - SIDRA INTERSECTION ANALYSIS COMPARISON TABLE (BUILD YEAR 2021)EXISTING INTERSECTION (TWO-WAY STOP) VERSUS ROUNDABOUT

Stage 0 Feasibility Study LA 1091 (Robert Blvd) at Country Club Blvd/ John Slidell Park Roundabout Study RPC Task SL.18:FY-18 UPWP, SPN: H.972275.1

				MI	DDAY PEAK H	OUR (WEEKEN	D)					
	5 2	Intersection LO	S	In	tersection Delay	7 (s)	Analysis Year					
Existing (Two-Way Stop)		А			3.8			Build Year (2021	l)			
Roundabout		A			1.2			Build Year (2021)			
		Appro	ach LOS				Approac	n v/c Ratio				
	LA 1091 (Rob	ert Boulevard)	Country Club/J	ohn Slidell Park		LA 1091 (Robe	rt Boulevard)	Country Club/	John Slidell Park			
	NB	SB	EB	WB		NB	SB	EB	WB			
Existing (Two-Way Stop)	А	А	С	D		0.282	0.235	0.328	0.372			
Roundabout	А	A	А	А		0.441	0.496	0.153	0.047			
						Delay (sec/veh)					
	LA 1091	l (Robert Boulev	ard) - NB	LA 1091	l (Robert Boulev	vard) - SB	Coun	try Club Bouleva	rd - EB	Jol	nn Slidell Park -	WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)	2.8	0.0	0.7	2.8	0.0	0.2	45.5	6.8	19.9	52.0	7.3	34.9
Roundabout	0.4	0.5	0.5	1.2	1.1	1.2	3.8	3.8	3.8	3.2	4.1	3.5
)	95th Percentile Q	Queue Length (f	t)				
	LA 1091 (Robert Boulevard) - NB LA 1			LA 1091	l (Robert Boulev	ard) - SB	Coun	try Club Bouleva	rd - EB	Jol	nn Slidell Park -	WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)	18.7	0.0	18.7	4.5	0.0	4.5	31.4	15.9	31.4	35.6	5.1	35.6
Roundabout	91.7	2.8	91.7	100.5	100.5	100.5	20.9	20.9	20.9	6.5	4.1	6.5

TABLE 8B - SIDRA INTERSECTION ANALYSIS COMPARISON TABLE (BUILD YEAR 2021)EXISTING INTERSECTION (TWO-WAY STOP) VERSUS ROUNDABOUT

Stage 0 Feasibility Study LA 1091 (Robert Blvd) at Country Club Blvd/ John Slidell Park Roundabout Study RPC Task SL.18:FY-18 UPWP, SPN: H.972275.1

				I	A.M. PEAK HO	<mark>UR (WEEKDAY</mark>)					
		Intersection LC)S	In	tersection Dela	y (s)		Analysis Year	r			
Existing (Two-Way Stop)	AAFFAAAAAAAAAAO0.3790.6740.240U0.3790.6740.2400.000ULA 1091 (Robert Boulevard) - NBLA 1091 (Robert Boulevard) - SBCountry Club Boulevard - EIUT/ThruThru/RTOverallLT/ThruThru/RTOverallLT/ThruRTO5.70.01.13.30.00.1236.225.510.40.50.40.80.80.86.36.36.300.40.50.40.80.80.80.86.36.3010.40.50.40.80.80.80.86.36.3017.50.01.7.52.90.02.917.445.51017.50.017.52.90.02.917.4.445.51017.50.017.52.90.02.917.4.445.51017.21.877.2201.0201.0201.037.437.40PM. PEAK HOUR (WEEKDAY)PM. PEAK HOUR (WEEKDAY)Intersection LOSIntersection Delay (s)Analysis YearLA 1091 (Robert Boulevard)Country Club/John Sidell ParkNBSBEB0AAAAAAAAAA	41)										
Roundabout		А			1.3		Design Year (2041)					
		Appro	ach LOS				Approach	n v/c Ratio				
	LA 1091 (Rob	ert Boulevard)	Country Club/J	John Slidell Park		LA 1091 (Rob	ert Boulevard)	Country Club/	/John Slidell Park			
	NB	SB	EB	WB		NB	SB	EB	WB			
Existing (Two-Way Stop)	А	А	F	F					0.363			
Roundabout	А	А	A	A		0.379	0.674	0.240	0.018			
						Delay ((sec/veh)					
		1 (Robert Boulev	vard) - NB	LA 109		vard) - SB		ry Club Boulev	ard - EB	54 A	n Slidell Park	- WB
	,		the second			NUMBER OF TROMOLOGY ISSUED	,		Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)									111.8	118.8	6.6	87.8
Roundabout	0.4	0.5	0.4	0.8	0.8	0.8	6.3	6.3	6.3	2.6	4.1	2.9
						95th Percentile (Queue Length (f	't)				
	LA 1091	1 (Robert Boulev	vard) - NB	LA 109	1 (Robert Bouley	vard) - SB	Count	ry Club Boulev	ard - EB	Joh	n Slidell Park	- WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)	SCHOMMERCORE	2-02-22-22750	0.001+0.23+0.041	12215060655	0.000.000	12 - 12 (2) - 2	10000 0000000	140030100.000	174.4	29.4	1.2	29.4
Roundabout	77.2	1.8	77.2	201.0	201.0	201.0	37.4	37.4	37.4	2.5	1.0	2.5
				1	P.M. PEAK HO	UR (WEEKDAY)					
		Intersection LC)S	In	tersection Dela	y (s)		Analysis Year	r			
Existing (Two-Way Stop)		F			76.8		I	Design Year (204	41)			
Roundabout		А			1.9		I	Design Year (204	41)			
		Appro	ach LOS				Approacl	n v/c Ratio				
	LA 1091 (Rob	ert Boulevard)	Country Club/	John Slidell Park		LA 1091 (Rob	ert Boulevard)	Country Club/	/John Slidell Park			
	NB	SB	EB	WB		NB	SB	EB	WB			
Existing (Two-Way Stop)	А	А	F	F		0.526	0.402	4.663	2.530			
Roundabout	А	А	А	А		0.730	0.712	0.200	0.052			
						Delay ((sec/veh)					
	LA 1091	1 (Robert Boulev	vard) - NB	LA 109	1 (Robert Boulev	vard) - SB	Count	ry Club Boulev	ard - EB	Joh	n Slidell Park	- WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)									1018.6	1292.0	29.7	688.3
Roundabout	1.3	0.9	1.2	1.6	1.6	1.7	5.8	5.8	5.8	7.4	8.7	8.0
						95th Percentile (Queue Length (f	t)				
		1 (Robert Boulev	vard) - NB	LA 109	1 (Robert Boulev	vard) - SB		ry Club Boulev	ard - EB	Joh	n Slidell Park	
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)				1					642.6	288.4	14.3	288.4
Roundabout	241.0	9.3	241.0	216.0	216.0	216.0	31.9	31.9	31.9	8.7	8.4	8.7

TABLE 9A - SIDRA INTERSECTION ANALYSIS COMPARISON TABLE (DESIGN YEAR 2041)EXISTING INTERSECTION (TWO-WAY STOP) VERSUS ROUNDABOUT

Stage 0 Feasibility Study LA 1091 (Robert Blvd) at Country Club Blvd/ John Slidell Park Roundabout Study RPC Task SL.18:FY-18 UPWP, SPN: H.972275.1

				MI	DDAY PEAK H	OUR (WEEKEN	D)					
		Intersection LC	S	Int	tersection Delay	7 (s)	Analysis Year					
Existing (Two-Way Stop)		А			7.0		I	Design Year (204	-1)			
Roundabout		А			1.2		I	Design Year (204	1)			
		Appro	ach LOS				Approach	n v/c Ratio				
	LA 1091 (Rob	ert Boulevard)	Country Club/J	ohn Slidell Park		LA 1091 (Robe	ert Boulevard)	Country Club/	John Slidell Park			
	NB	SB	EB	WB		NB	SB	EB	WB			
Existing (Two-Way Stop)	А	А	Е	F		0.327	0.274	0.527	0.692			
Roundabout	А	А	А	А		0.466	0.526	0.147	0.052			
						Delay (s	sec/veh)					
	LA 1091	l (Robert Boulev	ard) - NB	LA 1091	(Robert Boulev	ard) - SB	Count	try Club Bouleva	ard - EB	Jol	hn Slidell Park -	WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)	3.7	0.0	0.9	3.8	0.0	0.3	89.3	9.0	36.4	117.6	10.0	77.2
Roundabout	0.4	0.5	0.4	1.2	1.1	1.2	4.0	4.0	4.0	3.5	4.4	3.8
					9	95th Percentile Q	Queue Length (f	ït)				
	LA 1091	l (Robert Boulev	ard) - NB	LA 1091	(Robert Boulev	ard) - SB	Count	try Club Bouleva	ard - EB	Jol	hn Slidell Park -	WB
	LT/Thru	Thru/RT	Overall	LT/Thru	Thru/RT	Overall	LT/Thru	RT	Overall	LT/Thru	RT	Overall
Existing (Two-Way Stop)	24.5	0.0	24.5	6.6	0.0	6.6	50.1	18.6	50.1	71.3	7.2	71.3
Roundabout	101.2	3.0	101.2	112.9	112.9	112.9	21.1	21.1	21.1	7.6	5.0	7.6

TABLE 9B - SIDRA INTERSECTION ANALYSIS COMPARISON TABLE (DESIGN YEAR 2041)EXISTING INTERSECTION (TWO-WAY STOP) VERSUS ROUNDABOUT

Stage 0 Feasibility Study LA 1091 (Robert Blvd) at Country Club Blvd/ John Slidell Park Roundabout Study RPC Task SL.18:FY-18 UPWP, SPN: H.972275.1

4.3 Recommended Roundabout Layout Design

Based on geometrical and operational criteria outlined in LADOTD Roadway Design Procedure and Details Manual for Roundabout Design, the following roundabout layout design is recommended for the LA 1091 (Robert Boulevard) @ Country Club Boulevard and John Slidell Park intersection. The proposed single lane roundabout (offset left) consists of the following key parameters.

Inscribed Circle – 130 ft. to accommodate WB-67 design vehicle.

Circulatory Width - 20 ft.

Truck Apron - 18 ft.

Entry Radius - 100 ft. on all approaches to roundabout

<u>Exit Radius</u> – 400 ft. on all exits from the roundabout with the exception to Country Club Boulevard (200 ft. radius). This reduced exit radius is due to right-of-way constraints at Country Club Boulevard.

<u>Auxiliary Lanes</u> – Right-turn bypass lanes on the LA 1091 (Robert Boulevard) northbound approach and John Slidell Park westbound approach.

<u>Splitter Islands</u> – Minimum 75 ft. on LA 1091 (Robert Boulevard) approaches and minimum 50 ft. on the Country Club Boulevard and John Slidell Park approaches.

<u>Pedestrian Crosswalks</u> – Located on the LA 1091 (Robert Boulevard) northbound approach and positioned at least 20 ft. from yield point to center of crosswalk.

Pedestrian Sidewalks - Offset from the circulatory roadway by a minimum of 2 ft.

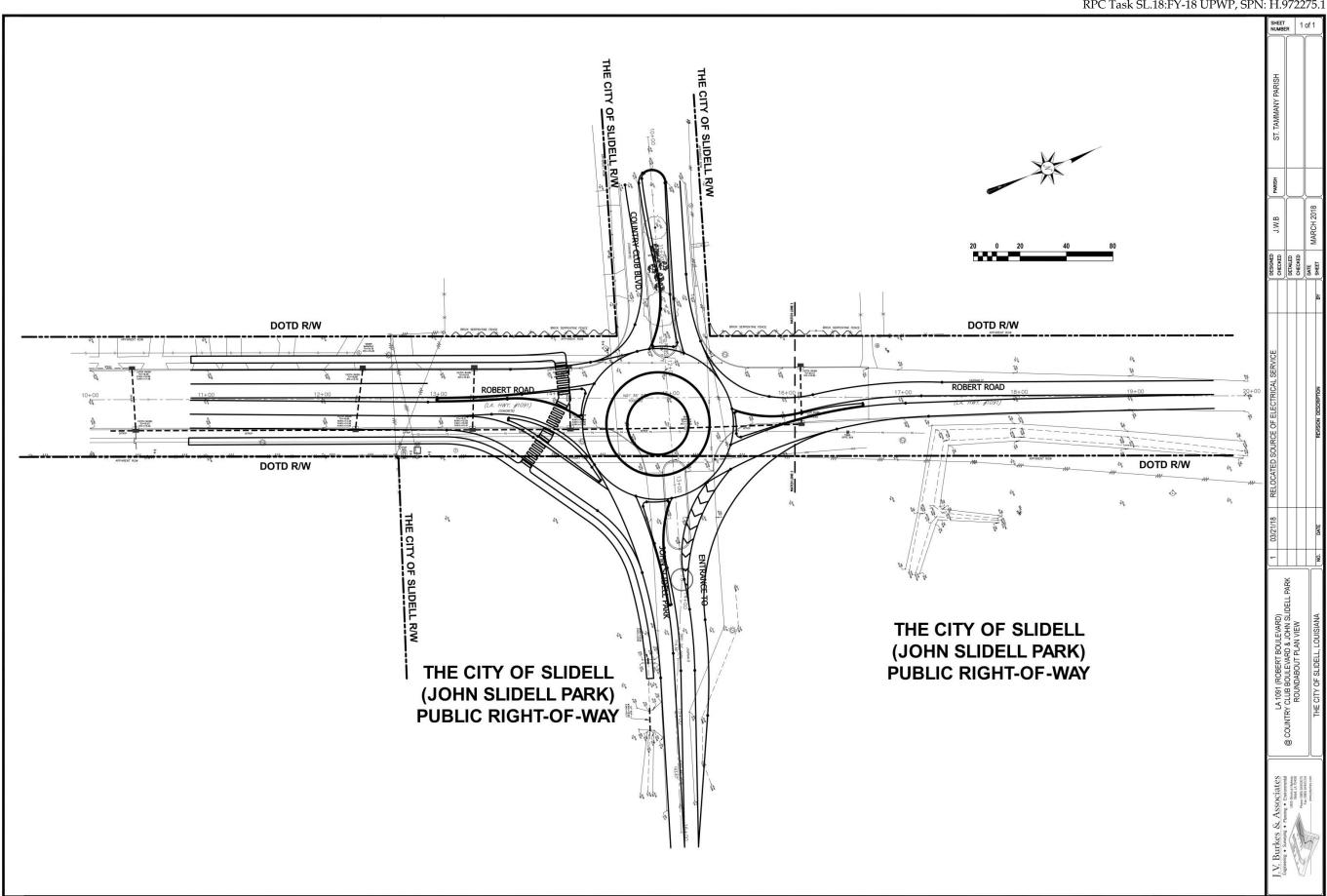
Figure 12 and 13 on the following pages provide a Plan View and Geometric Details sheet for the Recommended Roundabout Layout Design.

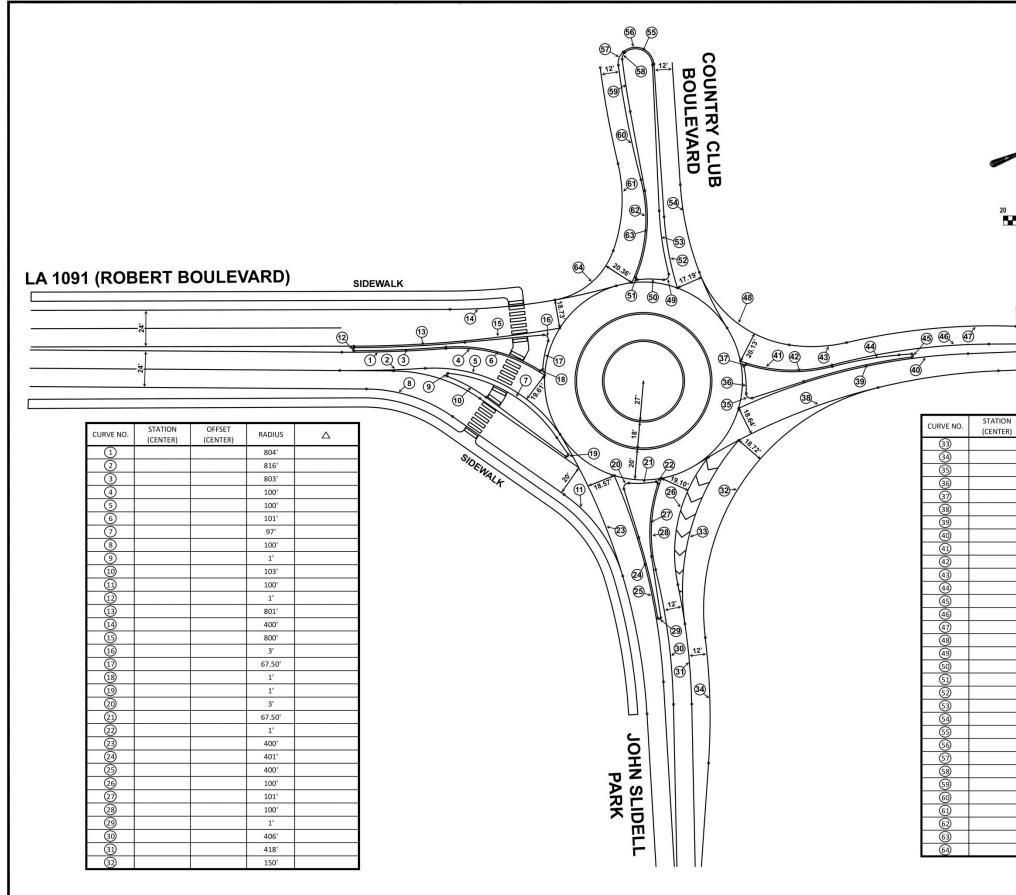
The AutoTURN analysis indicated that the Recommended Roundabout Layout Design accommodates WB-67 trucks on all approaches and exits to the roundabout with one exception. WB-67 trucks arriving on the LA 1091 (Robert Boulevard) southbound approach and turning right onto Country Club Boulevard overlap the outside edge of the travel lane by approximately 2 feet. There is sufficient space available on this approach to provide additional pavement for the truck over tracking. It should be noted, however, that Country Club Subdivision exclusively serves a residential subdivision and large truck traffic is not routine.

The VISSIM simulation models corroborated the results of the Sidra Intersection analysis and confirmed efficient operation of the Recommended Roundabout Layout Design for both the Build Year (3-Years) and Design Year (20-Years).

Field inspections indicate the roundabout will require the relocations of existing utilities along the east side of LA 1091 (Robert Boulevard) in the immediate vicinity of the intersection. These utility conflicts include buried gas and fiber optic lines that run adjacent to the highway, and above ground poles for overhead power lines and street lights. These utility relocations appear typical of those resulting from a highway widening project and/or installation of a roundabout.

4.3 Recommended Roundabout Layout Design - (Continued)


The roundabout installation will require the acquisition of City of Slidell public right-of-way servicing John Slidell Park. This may require a Section 4(f) environmental review due to the proximity of John Slidell Park, but a determination of de minimis impact is considered likely.


It is recommended that this project is funded as an Urban System Project and incorporated into the Regional Planning Commission (RPC) Transportation Improvement Program (TIP).

A Summary of Estimated Quantities (*See Table 10 on the following pages*) was prepared for the Recommended Roundabout Layout Design and the Opinion of Probable Construction Costs for the project is as follows.

Opinion of Probable Construction Costs = \$ 2,172,500.00

THIS COMPLETES THE NARRATIVE OF THE STAGE 0 FEASIBILITY REPORT

					SHEET	ER 1	of 1
			_		ST. TAMMANY PARISH		
					PARISH		
	0 20	40	80		J.W.B		MARCH 2018
				-	DESIGNED	DETALED CHECKED	DATE Sheet
					Τ	Π	
	OFFSET (CENTER)	RADIUS 150' 430' 3' 67.50' 1'	Δ		RELOCATED SOURCE OF ELECTRICAL SERVICE		REVISION DESCRIPTION
		400' 401' 400' 100' 101'		-	1 03/21/18		NO. DATE
		100' 250' 1' 406' 418' 75' 3' 67.50' 1' 200' 203' 200' 11.12' 12.12' 10'			LA 1091 (ROBERT BOULEVARD)	@ COUNTRY CLUB BOULEVARD & JOHN SLIDELL PARK ROUNDABOUT GEOMETRIC DETAILS	THE CITY OF SLIDELL, LOUISIANA
_		5' 597' 600' 100' 100'		Í	.V. Burkes & Associates	Cogureering - Surveyarg - Frianning - Environmential 1805 Seriet Hymer 1805 Seriet Hymer	Fax: 1985i 649-0154 www.jnburkies.com

Stage 0 Feasibility Study

SUMMARY OF ESTIMATED QUANTITIES

ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE	TOTAL
201-01-00100	Clearing and Grubbing	LUMP	1	5,000.00	5,000.00
202-01-00100	Removal of Structures and Obstructions	LUMP	1	10,000.00	10,000.00
202-02-02020	Removal of Asphalt Pavement	SQYD	1,800	6.50	11,700.00
202-02-32500	Removal of Portland Cement Concrete Pavement	SQYD	750	10.00	7,500.00
202-02-38500	Removal of Surfacing and Stabilized Base	SQYD	350	12.00	4,200.00
203-01-00100	General Excavation	CUYD	7,200	12.00	86,400.00
203-03-00100	Embankment	CUYD	6,600	24.00	158,400.00
204-02-00100	Temporary Hay or Straw Bales	EACH	55	20.00	1,100.00
204-06-00100	Temporary Silt Fencing	LNFT	2,800	2.00	5,600.00
302-02-05080	Class II Base Course (10" Thick) (Asphaltic Concrete Base on Embankment Layer)	SQYD	6,500	55.00	357,500.00
305-01-04020	Subgrade Layer (12" Thick) (Treated)	SQYD	6,500	20.00	130,000.00
402-01-00100	Traffic Maintenance Aggregate (Vehicular Measurement)	CUYD	350	55.00	19,250.00
502-01-00100	Superpave Asphaltic Concrete	TON	3,800	125.00	475,000.00
509-01-00100	Cold Planing Asphaltic Pavement	SQYD	3,900	9.00	35,100.00
601-01-00700	Portland Cement Concrete Pavement (11" Thick)	SQYD	900	120.00	108,000.00
701-03-01000	Storm Drain Pipe (15"RCP/PP)	LNFT	80	60.00	4,800.00
701-03-01040	Storm Drain Pipe (24"RCP/PP)	LNFT	300	80.00	24,000.00
702-03-00100	Catch Basin (CB-01)	EACH	5	2,500.00	12,500.00
702-03-00500	Catch Basin (CB-06)	EACH	5	3,500.00	17,500.00
706-01-00100	Concrete Walk (4" THICK)	SQYD	320	55.00	17,600.00
706-02-00200	Concrete Drive (6" THICK)	SQYD	400	90.00	36,000.00
707-01-00200	Concrete Curb (Barrier)	LNFT	350	15.00	5,250.00
707-03-00100	Combimation Concrete Curb And Gutter	LNFT	4,000	35.00	140,000.00
708-01-00100	Right-Of-Way Monument	EACH	15	300.00	4,500.00
713-01-00100	Temporary Signs and Barricades	LUMP	1	40,000.00	40,000.00
727-01-00100	Mobilization	LUMP	1	150,000.00	150,000.00
729-01-00100	Sign (Type A)	SQYD	210	25.00	5,250.00
729-22-00100	Square Tubing Post with 2-1/4" Anchor	EACH	6	90.00	540.00
731-02-00100	Reflectorized Raised Pavement Markers	EACH	260	10.00	2,600.00
732-01-02040	Plastic Pavement Striping (8" Width) (Thermoplastic 125 mil)	LNFT	450	3.00	1,350.00
732-01-02060	Plastic Pavement Striping (12" Width) (Thermoplastic 125 mil)	LNFT	190	6.00	1,140.00
732-02-02000	Plastic Pavement Striping (Solid Line) (4" Width) (Thermoplastic 90 mil)	MILE	1	9,000.00	11,700.00
732-03-02000	Plastic Pavement Striping (Broken Line) (4" Width) (Thermoplastic 90 mil)	MILE	0.15	5,000.00	750.00
732-03-02010	Plastic Pvmt Strip (Dotted Line) (4" W) (2' L) (Thermo 90 mil)	MILE	0.05	6,500.00	325.00
732-03-02050	Plastic Pvmt Strip (Dotted Line) (12" W) (2' L) (Thermo 90 mil)	MILE	0.05	20,000.00	1,000.00
732-04-01100	Plastic Pavement Legends and Symbols (Arrow - Right Turn)	EACH	2	350.00	700.00
732-04-01133	Plastic Pvmt Lgnds and Symb (Dir Arr Rndbt - Fshk) (Type LC)	EACH	3	1,200.00	3,600.00
732-04-15020	Plastic Pavement Legends and Symbols (Only)	EACH	2	500.00	1,000.00
739-01-00100	Hydo-Seeding	ACRE	4	1,400.00	5,600.00
740-01-00100	Construction Layout	LUMP	1	50,000.00	50,000.00
NS-500-00340	Saw Cutting Asphaltic Concrete Pavement	INLT	7,600	1.00	7,600.00
NS-600-00220	Saw Cutting Portland Cement Concrete Pavement	INLT	4,700	1.00	4,700.00
NS-729-00029	Breakaway Square Tubing Sign Support w/Mowing Pad - Soil	EACH	15	450.00	6,750.00
NS-500-00340	Breakaway Square Tubing Sign Support - Wet Concrete	EACH	10	350.00	3,500.00
			Construe	ction Total =	
				ontingency =	197,500.50
				Final Total =	and the second the second second

TABLE 10 - SUMMARY OF ESTIMATED QUANTITIES

Stage 0 Feasibility Study LA 1091 (Robert Blvd) at Country Club Blvd/ John Slidell Park Roundabout Study RPC Task SL.18:FY-18 UPWP, SPN: H.972275.1

APPENDIX

Monday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street	-		Minor Street	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	19	49	68	3	1	4	72
1 A.M.	20	22	42	1	0	1	43
2 A.M.	14	23	37	4	0	4	41
3 A.M.	9	18	27	3	0	3	30
4 A.M.	23	34	57	14	3	17	74
5 A.M.	55	96	151	19	3	22	173
6 A.M.	156	245	401	53	15	68	469
7 A.M.	359	481	840	137	16	153	993
8 A.M.	386	436	822	89	27	116	938
9 A.M.	357	483	840	68	48	116	956
10 A.M.	416	486	902	60	43	103	1005
11 A.M.	464	509	973	74	30	104	1077
12 P.M.	505	577	1082	75	19	94	1176
1 P.M.	501	578	1079	76	15	91	1170
2 P.M.	537	536	1073	83	27	110	1183
3 P.M.	665	558	1223	92	38	130	1353
4 P.M.	694	562	1256	81	24	105	1361
5 P.M.	702	563	1265	76	30	106	1371
6 P.M.	546	522	1068	90	2	92	1160
7 P.M.	347	389	736	45	1	46	782
8 P.M.	255	310	565	25	1	26	591
9 P.M.	156	211	367	15	1	16	383
10 P.M.	107	146	253	3	2	5	258
11 P.M.	52	68	120	2	2	4	124
Total	7345	7902	15247	1188	348	1536	16783

Tuesday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street	t		Minor Stree	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	23	30	53	4	0	4	57
1 A.M.	14	29	43	0	1	1	44
2 A.M.	9	19	28	1	0	1	29
3 A.M.	12	16	28	4	0	4	32
4 A.M.	33	47	80	15	1	16	96
5 A.M.	52	79	131	32	4	36	167
6 A.M.	179	237	416	46	9	55	471
7 A.M.	373	455	828	142	14	156	984
8 A.M.	429	465	894	134	26	160	1054
9 A.M.	379	440	819	67	27	94	913
10 A.M.	410	507	917	71	37	108	1025
11 A.M.	459	528	987	74	26	100	1087
12 P.M.	492	603	1095	96	29	125	1220
1 P.M.	461	568	1029	108	45	153	1182
2 P.M.	523	549	1072	70	27	97	1169
3 P.M.	687	615	1302	90	54	144	1446
4 P.M.	816	569	1385	112	70	182	1567
5 P.M.	805	541	1346	85	62	147	1493
6 P.M.	599	521	1120	69	22	91	1211
7 P.M.	454	448	902	37	18	55	957
8 P.M.	296	291	587	19	5	24	611
9 P.M.	168	201	369	16	4	20	389
10 P.M.	109	152	261	10	0	10	271
11 P.M.	32	81	113	3	0	3	116
Total	7814	7991	15805	1305	481	1786	17591

Wednesday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street			Minor Street	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	36	45	81	4	0	4	85
1 A.M.	18	27	45	3	0	3	48
2 A.M.	8	15	23	2	0	2	25
3 A.M.	12	18	30	3	0	3	33
4 A.M.	23	40	63	16	2	18	81
5 A.M.	58	89	147	23	10	33	180
6 A.M.	172	235	407	48	9	57	464
7 A.M.	386	463	849	133	15	148	997
8 A.M.	409	462	871	125	22	147	1018
9 A.M.	369	458	827	66	40	106	933
10 A.M.	374	479	853	83	47	130	983
11 A.M.	502	503	1005	80	20	100	1105
12 P.M.	527	561	1088	78	31	109	1197
1 P.M.	439	562	1001	82	30	112	1113
2 P.M.	489	544	1033	91	42	133	1166
3 P.M.	706	575	1281	72	47	119	1400
4 P.M.	783	559	1342	98	71	169	1511
5 P.M.	769	522	1291	89	62	151	1442
6 P.M.	578	570	1148	67	36	103	1251
7 P.M.	417	448	865	42	3	45	910
8 P.M.	332	365	697	32	11	43	740
9 P.M.	187	238	425	16	3	19	444
10 P.M.	115	143	258	5	0	5	263
11 P.M.	48	79	127	5	1	6	133
Total	7757	8000	15757	1263	502	1765	17522

Thursday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street	-		Minor Stree	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	23	43	66	2	1	3	69
1 A.M.	16	27	43	0	0	0	43
2 A.M.	10	26	36	1	0	1	37
3 A.M.	10	22	32	2	0	2	34
4 A.M.	20	41	61	14	1	15	76
5 A.M.	60	95	155	23	11	34	189
6 A.M.	166	235	401	49	9	58	459
7 A.M.	370	435	805	140	19	159	964
8 A.M.	405	469	874	109	23	132	1006
9 A.M.	378	490	868	74	32	106	974
10 A.M.	374	504	878	81	35	116	994
11 A.M.	451	530	981	61	36	97	1078
12 P.M.	488	609	1097	62	28	90	1187
1 P.M.	482	561	1043	79	44	123	1166
2 P.M.	544	542	1086	84	40	124	1210
3 P.M.	694	584	1278	106	55	161	1439
4 P.M.	807	630	1437	92	109	201	1638
5 P.M.	750	582	1332	101	30	131	1463
6 P.M.	636	563	1199	78	27	105	1304
7 P.M.	485	424	909	50	17	67	976
8 P.M.	328	371	699	23	4	27	726
9 P.M.	204	254	458	33	0	33	491
10 P.M.	107	183	290	11	0	11	301
11 P.M.	70	106	176	4	0	4	180
Total	7878	8326	16204	1279	521	1800	18004

Friday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street			Minor Street	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	23	49	72	3	0	3	75
1 A.M.	15	40	55	0	0	0	55
2 A.M.	10	22	32	1	0	1	33
3 A.M.	18	19	37	3	1	4	41
4 A.M.	22	35	57	17	2	19	76
5 A.M.	60	97	157	18	3	21	178
6 A.M.	163	218	381	61	13	74	455
7 A.M.	412	472	884	123	18	141	1025
8 A.M.	433	535	968	100	15	115	1083
9 A.M.	383	538	921	126	21	147	1068
10 A.M.	403	437	840	84	29	113	953
11 A.M.	498	680	1178	77	34	111	1289
12 P.M.	512	784	1296	87	20	107	1403
1 P.M.	529	745	1274	104	18	122	1396
2 P.M.	570	796	1366	90	15	105	1471
3 P.M.	669	900	1569	93	32	125	1694
4 P.M.	709	853	1562	84	15	99	1661
5 P.M.	720	825	1545	109	7	116	1661
6 P.M.	607	738	1345	76	4	80	1425
7 P.M.	477	650	1127	41	2	43	1170
8 P.M.	331	528	859	39	5	44	903
9 P.M.	231	347	578	30	4	34	612
10 P.M.	180	247	427	23	3	26	453
11 P.M.	113	152	265	8	0	8	273
Total	8088	10707	18795	1397	261	1658	20453

Saturday

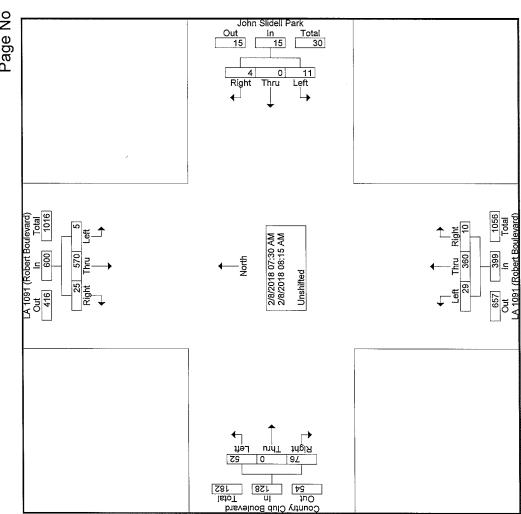
LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street			Minor Street	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	48	128	176	2	0	2	178
1 A.M.	27	69	96	0	0	0	96
2 A.M.	20	48	68	0	0	0	68
3 A.M.	14	21	35	2	0	2	37
4 A.M.	15	26	41	10	1	11	52
5 A.M.	31	60	91	7	5	12	103
6 A.M.	77	114	191	18	16	34	225
7 A.M.	155	262	417	59	19	78	495
8 A.M.	280	438	718	75	47	122	840
9 A.M.	389	599	988	85	65	150	1138
10 A.M.	440	599	1039	87	43	130	1169
11 A.M.	487	628	1115	107	32	139	1254
12 P.M.	494	619	1113	102	38	140	1253
1 P.M.	501	551	1052	85	58	143	1195
2 P.M.	551	561	1112	101	55	156	1268
3 P.M.	462	511	973	75	33	108	1081
4 P.M.	493	507	1000	72	55	127	1127
5 P.M.	520	488	1008	97	10	107	1115
6 P.M.	476	459	935	87	5	92	1027
7 P.M.	390	401	791	42	3	45	836
8 P.M.	245	357	602	23	4	27	629
9 P.M.	224	286	510	40	1	41	551
10 P.M.	200	239	439	53	0	53	492
11 P.M.	101	161	262	21	2	23	285
Total	6640	8132	14772	1250	492	1742	16514

Sunday

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell, St. Tammany Parish, Louisiana

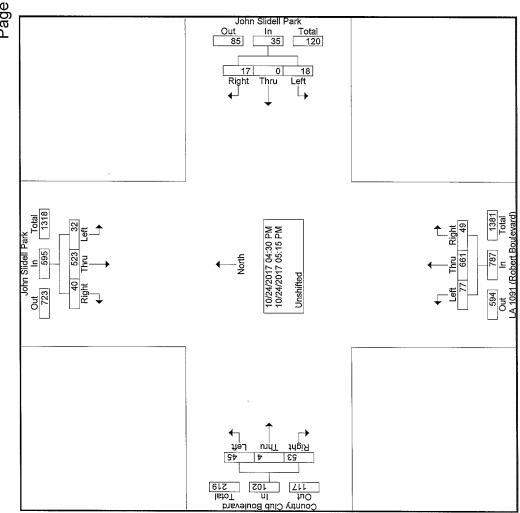

Major Street: NB & SB LA 1091 (Robert Boulevard) (NB) LA 1091 (Robert Boulevard) (SB) Minor Street: EB & WB Country Club Boulevard (EB) & John Slidell Park (WB)

Time		Major Street	t		Minor Street	t	Grand
Start	NB	SB	Total	EB	WB	Total	Total
12 A.M.	63	81	144	10	0	10	154
1 A.M.	41	75	116	5	0	5	121
2 A.M.	21	45	66	2	3	5	71
3 A.M.	16	41	57	5	1	6	63
4 A.M.	22	38	60	5	2	7	67
5 A.M.	26	39	65	7	1	8	73
6 A.M.	50	82	132	16	9	25	157
7 A.M.	122	164	286	27	3	30	316
8 A.M.	179	281	460	67	6	73	533
9 A.M.	262	333	595	51	7	58	653
10 A.M.	320	497	817	69	16	85	902
11 A.M.	382	547	929	64	16	80	1009
12 P.M.	441	607	1048	66	15	81	1129
1 P.M.	430	475	905	58	30	88	993
2 P.M.	355	501	856	58	19	77	933
3 P.M.	408	412	820	58	26	84	904
4 P.M.	372	392	764	61	21	82	846
5 P.M.	389	411	800	73	7	80	880
6 P.M.	411	472	883	49	2	51	934
7 P.M.	290	374	664	29	4	33	697
8 P.M.	207	279	486	21	3	24	510
9 P.M.	129	182	311	7	0	7	318
10 P.M.	91	110	201	8	0	8	209
11 P.M.	50	69	119	4	1	5	124
Total	5077	6507	11584	820	192	1012	12596

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell

St. Tammany Parish, LA

File Name : am peak hour 020818 (thu) Site Code : 00000000 Start Date : 2/8/2018 Page No : 2


LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell St. Tammany Parish, LA

File Name : am peak hour 020818 (thu) Site Code : 00000000 Start Date : 2/8/2018 Page No : 3

	Int. Total			242	329	302	269	1142		.868
þ	App. Total			24	36	35	33	128		.889
Bouleval Vest	Left			ω	4	15	15	52	40.6	.867
Country Club Boulevard From West	Thru			0	0	0	0	0	0	000
õ	Right			16	22	20	18	26	59.4	.864
rd)	App. Total			77	116	121	85	399		.824
LA 1091 (Robert Boulevard From South	Left A			4	7	12	9	29	7.3	.604
091 (Robert Bo From South	Thru			71	108	104	77	360	90.2	.833
LA 1(Right			2		5 C	5	10	2.5	.500
	App. Total			2	с С	4	9	15		.625
ell Park East	eft.			2	~	4	4	11	73.3	.688
John Slidell Park From East	Thru			0	0	0	0	0	0	000
	Right			0	7	0	2	4	26.7	.500
()		eak 1 of 1	2		174	142	145	600		.862
LA 1091 (Robert Boulevard) From North	Thru Left App. Total	3:15 AM - P	at 07:30 AI	7	2	~	0	5	0.8	.625
)91 (Robert Bou From North	Thru) AM to 08	in Begins	131	164	136	139	570	95	.869
LA 1(Right	From 07:3(Intersectic	9	80	5	9	25	4.2	.781
	Start Time Right	Peak Hour Analysis From 07:30 AM to 08:15 AM - Peak 1 of 1	Peak Hour for Entire Intersection Begins at 07:30 AM	07:30 AM	07:45 AM	08:00 AM	08:15 AM	Total Volume	% App. Total	HHH

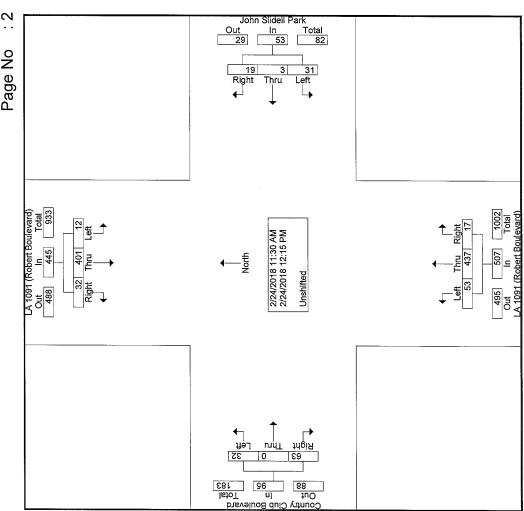
LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell St. Tammany Parish, LA

File Name : PM Peak Hour 102417 Site Code : 00000000 Start Date : 10/24/2017 Page No : 2

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell

St. Tammany Parish, LA

File Name:PM Peak Hour 102417 Site Code :00000000 Start Date :10/24/2017 Page No :3


Int. Total 361 347 394 **417** 1519 911 22 30 18 30 32 102 Left App. Total .797 Country Club Boulevard 15 10 2 45 .625 .625 From West Thru 333 44 333 0 0 0 7 7 11 52 52 .697 Right 196 175 **217** 199 787 Left App. Total 907 LA 1091 (Robert Boulevard) 22 14 77 77 9.8 9.8 From South Thru 162 141 141 187 171 661 84 884 Right Left App. Total 795 5 18 51.4 John Slidell Park 4 900 From East 0 0 0 0 000 Thru 00 Right 17 48.6 .607 З 4 m
 Start Time
 Right
 Thru
 Left
 App. Total

 Peak Hour Analysis From 04:30 PM to 05:15 PM - Peak 1 of
 Peak Hour for Entire Intersection Begins at 04:30 PM
 135 132 151 177 595 .840 6 5.4 <u>5.4</u> <u>667</u> John Slidell Park From North 118 113 133 159 523 87.9 .822 13 9 40 6.7 769 Total Volume % App. Total 04:30 PM 04:45 PM 05:00 PM 05:15 PM PHF

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell

St. Tammany Parish, LA

File Name : MD Peak Weekend 022418 (Sat) Site Code : 00000000 Start Date : 2/24/2018 Page No : 2

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park The City of Slidell St. Tammany Parish, LA

File Name : MD Peak Weekend 022418 (Sat) Site Code : 00000000 Start Date : 2/24/2018 Page No : 3

	Int. Total			280	287	262	271	1100		.958
p	App. Total			27	27	21	20	95		.880
b Bouleva West	Left			10	80	ъ	თ	32	33.7	.800
Country Club Boulevard From West	Thru			0	0	0	0	0	0	000
ပိ	Right			17	19	16	1	63	66.3	.829
ard)	App. Total			125	119	134	129	507		.946
ert Boulev South	Left			÷	18	13	1	53	10.5	.736
LA 1091 (Robert Boulevard) From South	Thru			108	97	116	116	437	86.2	.942
LA 10	Right	2		9	4	5	2	17	3.4	.708
	App. Total			16	19	8	10	53		.697
ell Park East	eft.			9	13	ъ С	7	31	58.5	.596
John Slidell Park From East	Thru			-	~	~	0	ო	5.7	.750
	Right			6	5	7	ო	19	35.8	.528
()	p. Total	eak 1 of 1	_	112	122	66	112	445		.912
LA 1091 (Robert Boulevard) From North	Thru Left App. Total	2:15 PM - P	at 11:30 AN	5		4	2	12	2.7	.600
091 (Robert Bo From North		D AM to 1	on Begins	97	114	06	100	401	90.1	.879
LA 1	Right	rom 11:3	Intersectic	9	7	ŋ	10	32	7.2	.800
	Start Time Right	Peak Hour Analysis From 11:30 AM to 12:15 PM - Peak 1 of 1	Peak Hour for Entire Intersection Begins at 11:30 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	Total Volume	% App. Total	ΡΗF

Spot Speed Study

LA 1091 (Robert Boulevard) 200' south of Country Club Boulevard & John Slidell Park TIME OF STUDY: 1:15-2:30 P.M. WEATHER: February 1, 2018 Good, Clear ROAD CONDITIONS: Northbound Dry LA 1091 (Robert Boulevard) PARISH: St. Tammany POSTED SPEED LIMIT: 852-25 40 mph

LOCATION: REPORT# DATE: DIRECTION OF TRAVEL: ROUTE: CONTROL SECTION:

MEAN (AVERAGE): 46 mph MODE: 45 mph MEDIAN: 46 mph OTTOM OF 10 MPH PACE SPEED: 42 mph TOP OF 10 MPH PACE SPEED: 52 mph

CUMLATIVE Cumlative SPEED FREQUENCY PERCENT PERCENT SPEED FREQUENCY PERCENT PERCENT 15 49 9 0.09 69.00% 16 50 8 0.08 77.00% 9 17 51 0.09 86.00% 52 5 18 91.00% 0.05 19 53 3 0.03 94.00% 20 54 94.00% 21 55 94.00% 22 1 0.01 95.00% 56 23 57 95.00% 24 58 1 0.01 96.00% 25 59 96.00% 26 60 2 0.02 98.00% 27 99.00% 61 1 0.01 28 62 1 0.01 100.00% 29 100.00% 63 30 100.00% 64 31 0.01 1.00% 100.00% 1 65 32 1.00% 66 100.00% 1.00% 33 67 100.00% 34 1.00% 68 100.00% 35 1 0.01 2.00% 69 100.00% 36 2 0.02 4.00% 70 100.00% 37 1 0.01 5.00% 71 100.00% 72 38 3 0.03 8.00% 100.00% 39 9.00% 73 100.00% 1 0.01 74 40 5 0.05 14.00% 100.00% 75 2 100.00% 41 0.02 16.00% 21.00% 76 100.00% 42 5 0.05 43 10 0.10 31.00% 77 100.00% 78 100.00% 44 3 0.03 34.00% 47.00% 79 100.00% 45 13 0.13 46 10 0.10 57.00% 80 100.00% 47 3 0.03 60.00% 100.00% 48 60.00% 100.00%

50TH PERCENTILE: 46 mph 85TH PERCENTILE: 51 mph 95TH PERCENTILE: 57 mph NO. OF OBSERVATIONS: 100 % OF VEHICLES IN PACE RANGE: 75

Spot Speed Study

LOCATION: LA 1091 (Robert Boulevard) 200' south of Country Club Boulevard & John Slidell Park REPORT# DATE: DIRECTION OF TRAVEL: ROUTE: CONTROL SECTION: 852-25

February 1, 2018 Southbound LA 1091 (Robert Boulevard)

50TH PERCENTILE: 49 mph 85TH PERCENTILE: 53 mph 95TH PERCENTILE: 57 mph NO. OF OBSERVATIONS: 100 % OF VEHICLES IN PACE RANGE: 75

TIME OF STUDY:

ROAD CONDITIONS:

POSTED SPEED LIMIT:

WEATHER:

PARISH:

2:45-4:15 P.M.

Good, Clear

Dry

St. Tammany

40 mph

MEAN (AVERAGE): 48 MODE: 45 & 49 mph MEDIAN: 49 mph OTTOM OF 10 MPH PACE SPEED: 44 mph TOP OF 10 MPH PACE SPEED: 54 mph

SPEED FREQUENCY PERCENT SPEED FREQUENCY PERCENT PERCENT 15 49 12 0.12 59.00% 16 50 6 0.06 65.00% 17 51 8 0.08 73.00% 19 52 4 0.04 77.00% 19 53 9 0.09 86.00% 20 54 4 0.04 90.00% 21 55 2 0.02 92.00% 23 57 1 0.01 95.00% 24 58 1 0.01 95.00% 25 61 0.02 99.00% 28 62 99.00% 99.00% 30 64 99.00% 99.00% 32 66 99.00% 100.00% 33 67 1 0.01 100.00% 34 62 0.02 99.00% 99.00%				CUMLATIVE				Cumlative
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPEED	FREQUENCY	PERCENT	PERCENT	SPEED	FREQUENCY	PERCENT	PERCENT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15				49	12	0.12	59.00%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16				50	6	0.06	65.00%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17				51	8	0.08	73.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18				52	4	0.04	77.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						9	0.09	86.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20					4	0.04	90.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21				55	2	0.02	92.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22				56	2	0.02	94.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23					1	0.01	95.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25				59	1	0.01	97.00%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26				60	2	0.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					61			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								99.00 %
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	31				65			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					67	1	0.01	100.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								100.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0.01					100.00%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.02	3.00%				100.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0.01					100.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
		5						
44 3 0.03 18.00% 78 100.00% 45 12 0.12 30.00% 79 100.00% 46 8 0.08 38.00% 80 100.00% 47 9 0.09 47.00% 100.00%								
45 12 0.12 30.00% 79 100.00% 46 8 0.08 38.00% 80 100.00% 47 9 0.09 47.00% 100.00%								
46 8 0.08 38.00% 80 100.00% 47 9 0.09 47.00% 100.00% 100.00%								
47 9 0.09 47.00% 100.00%								
					80			
<u>48</u> <u>47.00%</u> <u>100.00%</u>		9	0.09					
	48			47.00%				100.00%

LADOTD Crash List

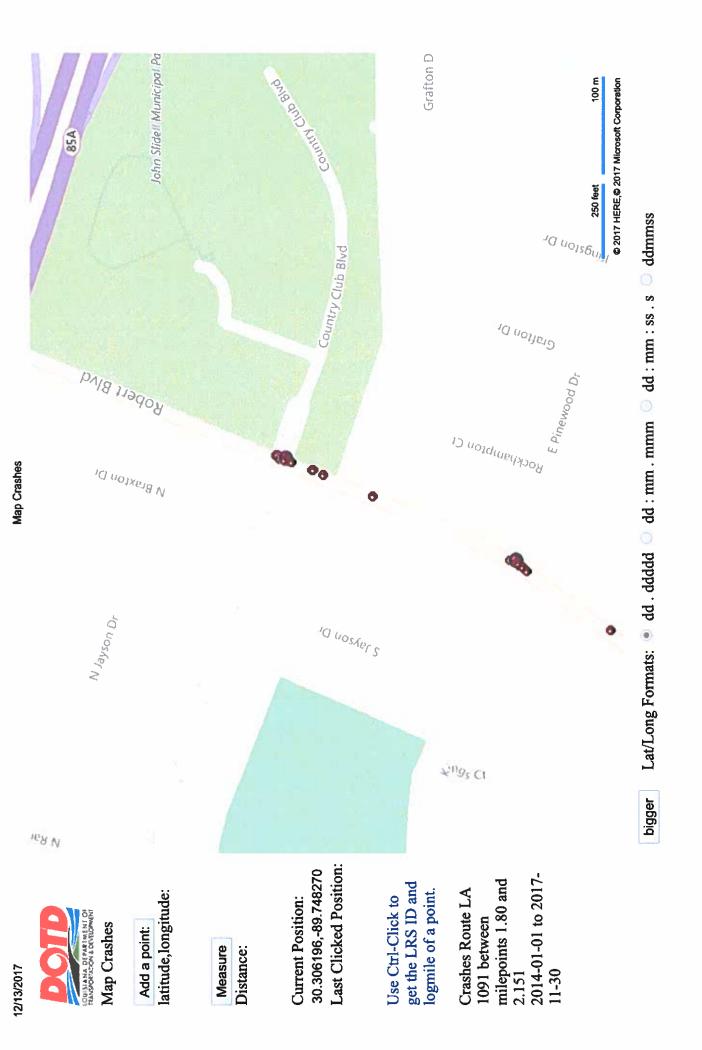
Robert Blvd and Country Club Blvd Intersection Crash Report 2014 - 2017

Route LA 1091 between milepoints 1.80 and 2.151 2014-01-01 to 2017-11-30

TRANSPORTA	COULSI & NA DEPARTMENT OF TRANSPORTATION & DEVELOPMENT	ENT OF																				
Route	Mile Point	Csect	og ti lile at	Log tot pdo fat inj Mile acc acc acc acc	fat acc	inj acc	num fat	num num fat inj	n crash date	most harm evt	manner coll	crash type	surf cond	crash num	par ish	hour int	int B	iv d agy tr	dir mo trav pri	move prior		LRS Logmile
1091	1.80	1.80 852-25 1.	1.80	1 0	0	-	0		12014-01-01	Util Pole/Light Sup Non Coll		Vertical fixed wet		140101220325497 52		21	0 B	S	C	19400		1.801
1091	1.98	1.98 852-25 1.	1.98	1 1	0	0	0		0 2014-02-27 MV in Tr	ans	Rear End	2 vehicles	dry	140307214718399 52 17	52	17	1 B	B EN	N	19400		1.977
1091	1.87	1.87 852-25 1.	1.87	1 0	0 0	1	0		12014-03-05 MV	in Trans	Rt Angle	Motorcycle	dتy	140307033502750 52		21	0 B	3 ES	S AB	B 19400		1.873
1091	2.04	2.04 852-25 2.04	8	1 1	0	0	0		0 2014-05-12 MV in Tr	ans	Rt Angle	2 vehicles	dry	14051319121840452	52	18	1 B	BES	S JA	19400		2.038
1001	1.87	1.87 852-25 1.	1.87	1	0	-	0		12014-07-06 MV	in Trans	Rt Angle	Motorcycle	Ъ	14071323062079652		16	В П		HINM	19400		1.870
1001	2.04	2.04 852-25 2.04	2	1 0	0 0	-	0		12014-08-21 MV	in Trans	Left Tum-f	Motorcycle	Ъ	14082609125034752		18	1	SN 8	S AB	B 19400		2.040
Total	2014			6 2	0	4	°		4]
1091	1.88	1.88 852-25 1.	1.88	-	0	0	0		02015-01-05 MV in T	rans	Rt Angle	2 vehicles	Ъ	15010516550644252		16	<u>10</u>	SW 8	II S/	17500		1.877
1091	2.04	2.04 852-25 2.04	8	1 0	0	-	0		22015-02-15 MV in Tr	MV in Trans	Left Turn-f	2 vehicles	dry	15022501303163152		16	- - -	SN S	S B	17500		2.035
1091	2.04	2.04 852-25 2.04	8	1	0	0	0		02015-03-26 MV in Tr	ans	Rt Angle	2 vehicles	wet	15032614055540552 14	52	14	<u>в</u> 	ss ss	B B	17500	[2.039
1091	1.88	1.88 852-25 1.	1.88	1 0	0 0	-	0		32015-03-27 MV in Tr	ans	Left Turn-f	2 vehicles	dry	15032920531514652		21	1 B	SN	N	17500		1.879
1091	2.04	2.04 852-25 2.04	8	1	0	0	0		02015-04-01 MV in	Trans	Rt Angle	3+ vehicles	dry	15040120305500752	52	18	1 B		WNS IBB	B 17500	Ι	2.041
1001	1.88	1.88 852-25 1.	1.88	1 1	0	0	0		02015-05-12 MV in	Trans	S Swipe(sd) 2 vehicles		dry	15051214575997052		14	1 B	NN 8	N	17500		1.877
1001	1.88	1.88 852-25 1.	1.88	1 1	0	0	0		02015-08-08 MV	MV in Trans	Left Tum-e	2 vehicles	dry	150817193738222 52		12	0 B	NN 8	N N	17500		1.876
1001	1.87	1.87 852-25 1.	1.87	1 1	0	0	0		0 2015-08-22 MV in Tr	ans	Rt Angle	2 vehicles	dry	150823121143795 52	52	60	1 B		WN IB	17500		1.874
1091	1.87	1.87 852-25 1.	1.87	1	0	0	0		02015-12-29 MV	in Trans	Left Tum-e	2 vehicles	dry	160106205945393 52		18	1 B	NZ S	E Z	17500	-	.873
Total	2015		\vdash	9 7	0	2	0		5													
1091	2.01	2.01 852-25 2.01	01	1 1	0	0	0		02016-01-09 MV in Ti	ans	Rear End	2 vehicles	dry	160114205746670 52		14	0 B	NN 8	N BA	A 17200		2.011
1001	2.04	2.04 852-25 2.0	2.04	1	0	0	0		02016-01-23 MV	in Trans	Rt Angle	2 vehicles	dry	160123063204342 52	52	17	1 B	BES	S IB	17200		2.040
																						1

CONFIDENTIAL INFORMATION - This document and the information contained herein is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads which may be implemented utilizing federal and highway funds; and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409. Contact the Traffic Safety Office at (225)379-1871 before releasing any information.

LADOTD Crash List

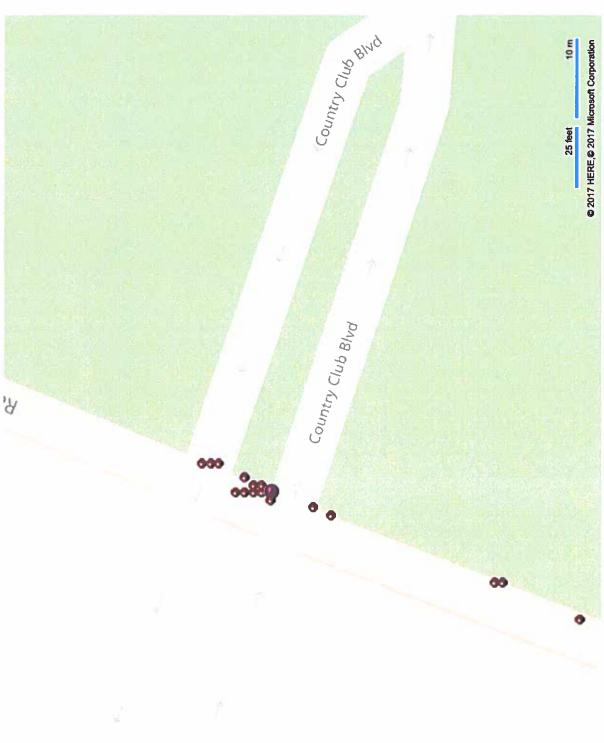

Robert Blvd and Country Club Blvd Intersection Crash Report 2014 - 2017

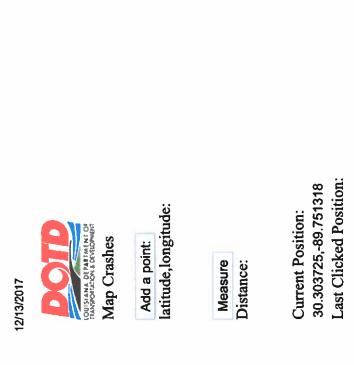
Route LA 1091 between milepoints 1.80 and 2.151 2014-01-01 to 2017-11-30

LOUISIAN	LOUISIANA DEPARTMENT OF TRANSPORTATION & DEVELOPMENT	LONNENT			•																
Route	e Mile Paint	Csect	Log tot pdo fat inj num num Milejace acc acc acc fat ini	pdo	fat	inj acc	oum fat	num ini	crash date	most harm evt	manner coll	crash tyne	surf cond	crash num	par ish	hour int	int.	iv d aev tr	dir move trav nrior		ADT LRS Logmile
1091	2.04	852-25	1	-	0	0			9	MV in Trans	in Trans Left Turn-f	2 vehicles		252310		17		B	·	17200	0 2.039
1091	2.02	2.02 852-25 2.02	02 1	P	0	-	°		3 2016-03-10 MV		S Swipe(sd)	in Trans S Swipe(sd) 3+ vehicles dry	<u> </u>	160324151926457 52	_	17	6	Z m	NN HB	NNN HBA 17200	0 2.018
1091	2.02	2.02 852-25 2.02	02 1	-	0	0	0		02016-05-19 MV		in Trans Rear End	2 vehicles	Г Ар	160526023652276 52 16	52	16	0	BNN	N BQ	2 17200	0 2.018
1091	2.04	2.04 852-25 2.04	1	0	0		0		2 2016-09-28 MV		in Trans Left Turn-e 2 vehicles		l Vib	160928221523939 52		17		B NS	S IB	17200	0 2.040
1001	2.04	2.04 852-25 2.04	04	0	0	-	0	1	2016-10-13 MV		in Trans Rt Angle	2 vehicles	dry 1	161020230512952 52		17		B W	WN WB	B 17200	0 2.038
1091	2.04	2.04 852-25 2.04	04	0	0	-	0	1	2016-10-23 MV		in Trans Rear End	2 vehicles	L L	161101023400050 52	52	11		B SS	S BM	1 17200	0 2.043
1091	2.04	2.04 852-25 2.04	04 1	0	0	-	0	1	2016-11-04 MV		Left Tum-e	in Trans Left Turn-e Motorcycle dry		161114062414526 52	52	18	0	B SN	R R	17200	0 2.044
1091	2.04	2.04 852-25 2.04	04	°	0		0	1	2016-11-17 MV		in Trans Left Turn-f 2 vehicles	I	l Vib	161123000519403 52 08	52	80		B SN	8 z	17200	0 2.038
1091	2.04	2.04 852-25 2.04	04 1	-	0	0	0	0	02016-11-19 MV		in Trans Rt Angle	2 vehicles	dry 1	161120005455415 52	52	21		B ES	SB	17200	0 2.040
Total	2016		11	5	0	6	0	6													
1091	2.04	2.04 852-25 2.04	04 1		0	0	0	0	02017-02-14 MV		in Trans Rt Angle	2 vehicles	dry 1	170214082245392 52		07		BES	S IH	17200	0 2.038
1091	1.87	1.87 852-25 1.3	1.87 1	0	0	-	0	1	2017-04-27 MV		in Trans Rear End	2 vehicles	dry 1	170502155457747 52 16	52	16		B SS	S BM	17200	0 1.866
1091	2.03	2.03 852-25 2.03	03 1		0	0	0	0	02017-07-08 MV		in Trans Rear End	2 vehicles	dry 1	170711094426975 52	52	16	1	B NN	N BA	17200	0 2.033
1091	1.88	1.88 852-25 1.88	88 1	_	0	0	0	0	02017-08-24 MV		in Trans Rear End	2 vehicles	dry 1	170829180410309 52	52	11	0	B SS	S BA	17200	0 1.876
1091	2.04	2.04 852-25 2.04	04		0	0	0	0	02017-09-02 MV		in Trans Left Turn-g 2 vehicles	I	dry 1	170904041539125 52	52	19		BEN	e z	17200	0 2.041
1091	2.04	2.04 852-25 2.04	04 1	0	0	-	0	2	2017-10-24 MV		in Trans Left Turn-f 2 vehicles		dry 1	17102416390673852		12		B NS	S IB	17200	0 2.043
Total	2017		6	4	ų o	2	0	3													
Granc	Grand Total		32	18	0	14	0	21													1
																					1

CONFIDENTIAL INFORMATION - This document and the information contained herein is prepared solely for the purpose of identifying, evaluating and planning safety improvements on public roads which may be implemented utilizing federal aid highway funds; and is therefore exempt from discovery or admission into evidence pursuant to 23 U.S.C. 409. Contact the Traffic Safety Office at (225)379-1871 before releasing any information.

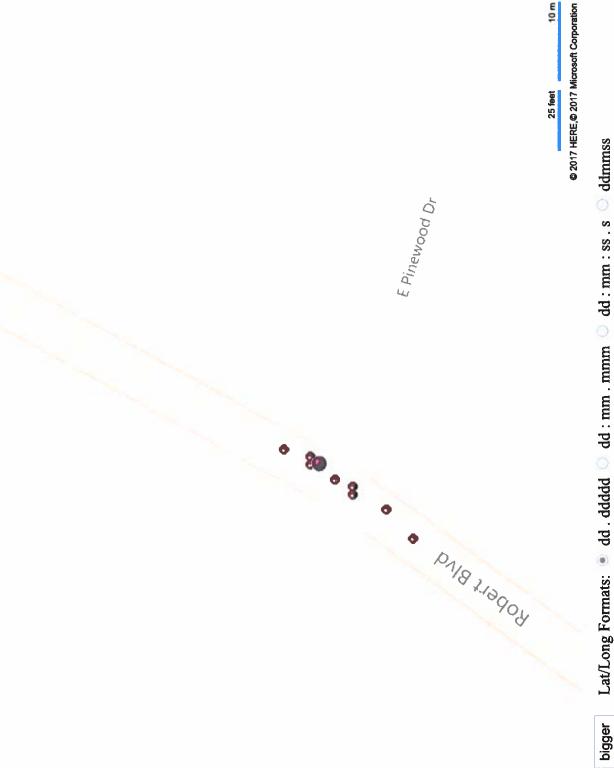
report generated by elundin@cityofslidell.org on 12/13/2017 2:57:38 PM




Add a point: latitude,longitude:

Measure Distance: Current Position: 30.305901,-89.749618 Last Clicked Position:

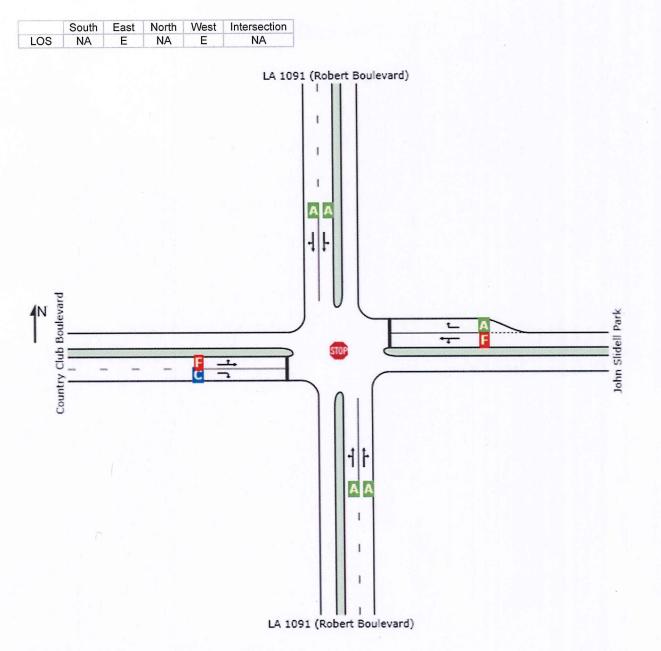
Use Ctrl-Click to get the LRS ID and logmile of a point. Crashes Route LA 1091 between milepoints 1.80 and 2.151 2014-01-01 to 2017-11-30



Lat/Long Formats: 💿 dd . ddddd 🔘 dd : mm . mmm 🔵 dd : mm : ss . s 🔘 ddmmss bigger

get the LRS ID and logmile of a point. Use Ctrl-Click to

2014-01-01 to 2017-11-30 milepoints 1.80 and Crashes Route LA 1091 between 2.151



10 m

9 Site: A.M. Peak Hour_Build Year-3 Year (Final) - Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:49:04 PM

🤓 Site: A.M. Peak Hour_Build Year-3 Year (Final) - Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 3 years

		rmance - Ve			and the second secon			10.00	Dran	Effective	Average
Mov	OD	Demand		Deg.	Average	Level of Service	95% Back (Vehicles	Distance	Prop. Queued	Stop Rate	Speed
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	venicies veh	ft	Queueu	per veh	mph
South:	LA 1091 (Ro	obert Bouleva									
3	L2	32	0.0	0.223	4.2	LOS A	0.5	12.7	0.16	0.01	41.2
8	T1	401	4.8	0.223	0.6	LOS A	0.5	12.7	0.13	0.01	43.7
18	R2	11	0.0	0.045	0.0	LOS A	0.0	0.0	0.00	0.00	41.8
Approa	ach	443	4.3	0.223	0.8	NA	0.5	12.7	0.13	0.01	43.5
East:	Iohn Slidell F	Park									
1	L2	12	0.0	0.176	55.7	LOS F	0.6	14.5	0.94	0.94	19.7
6	T1	1	0.0	0.176	29.3	LOS D	0.6	14.5	0.94	0.94	19.7
16	R2	4	0.0	0.009	5.0	LOS A	0.0	0.9	0.58	0.40	34.4
Appro	ach	18	0.0	0.176	41.4	LOS E	0.6	14.5	0.85	0.81	22.1
North:	LA 1091 (Ro	obert Bouleva	rd)								
7	L2	6	0.0	0.310	2.4	LOS A	0.1	1.9	0.01	0.00	42.4
4	T1	635	4.8	0.310	0.0	LOS A	0.1	1.9	0.01	0.00	44.
14	R2	27	0.0	0.062	0.0	LOS A	0.0	0.0	0.00	0.00	41.:
Appro	ach	667	4.6	0.310	0.1	NA	0.1	1.9	0.01	0.00	44.
West:	Country Clu	b Boulevard									
5	L2	57	0.0	0.635	77.8	LOS F	2.8	70.1	0.97	1.07	16.
2	T1	1	0.0	0.635	59.7	LOS F	2.8	70.1	0.97	1.07	16.
12	R2	83	0.0	0.289	15.3	LOS C	1.3	32.1	0.80	0.83	29.
Appro	ach	140	0.0	0.635	40.8	LOS E	2.8	70.1	0.87	0.93	22.
All Ve	hicles	1269	3.9	0.635	5.4	NA	2.8	70.1	0.16	0.12	39.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

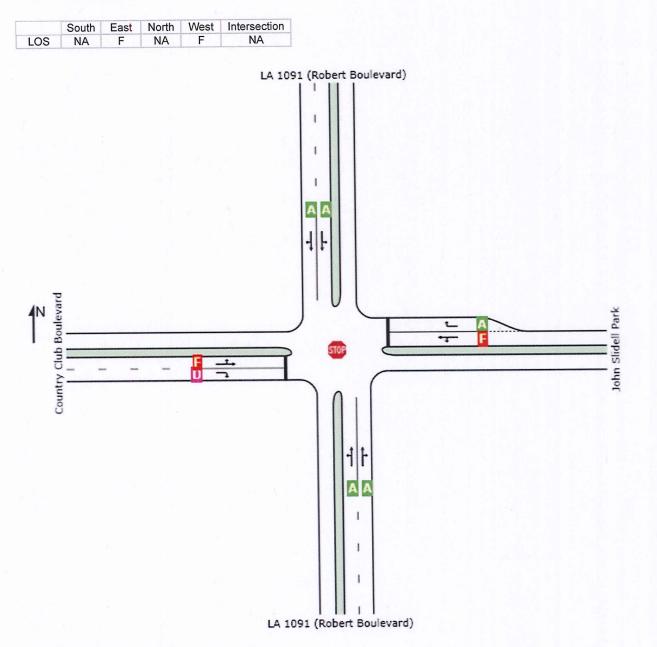
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:49:04 PM

Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated 041818.sip6

😳 Site: A.M. Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 4:02:13 PM

10 Site: A.M. Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 23 years

Movement Performance - Vehicles Effective Average 95% Back of Queue Demand Flows South: LA 1091 (Robert Boulevard) 0.17 0.01 41.0 0.7 17.5 5.7 LOS A 0.0 0.262 3 L2 32 43.5 17.5 0.14 0.01 0.8 LOSA 0.7 470 4.8 0.262 8 T1 0.00 41.8 0.00 0.0 LOS A 0.0 0.0 0.0 0.052 18 R2 13 0.14 0.01 43.3 17.5 1.1 NA 0.7 515 4.4 0.262 Approach East: John Slidell Park 1.00 12.7 0.97 29.4 14 0.0 0.363 118.8 LOS F 1.2 L2 1 1.00 12.7 LOS F 1.2 29.4 0.97 0.363 69.2 6 Τ1 1 0.0 0.62 0.47 33.6 0.0 1.2 6.6 LOS A 0.012 16 R2 5 0.0 15.1 0.87 29.4 0.88 21 0.363 87.8 LOS F 1.2 0.0 Approach North: LA 1091 (Robert Boulevard) 42.4 0.02 0.00 0.1 2.9 0.362 3.3 LOS A L2 7 0.0 7 0.00 44.7 0.1 2.9 0.02 T1 744 4.8 0.362 0.1 LOS A 4 41.4 LOS A 0.0 0.0 0.00 0.00 0.0 0.0 0.072 **R**2 27 14 0.01 0.00 44.5 0.1 2.9 NA Approach 778 4.6 0.362 0.1 West: Country Club Boulevard 1.00 1.29 7.5 LOS F 7.0 174.4 236.2 0.0 1.102 5 L2 57 1.29 7.5 7.0 174.4 1.00 202.7 LOS F 1 0.0 1.102 2 **T1** 0.95 26.3 0.88 LOS D 1.8 45.5 0.0 0.407 25.5 **R2** 83 12 0.93 1.09 13.0 174.4 7.0 140 0.0 1.102 111.8 LOS F Approach 35.0 0.16 0.12 7.0 174.4 1453 4.0 1.102 12.5 NA All Vehicles

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

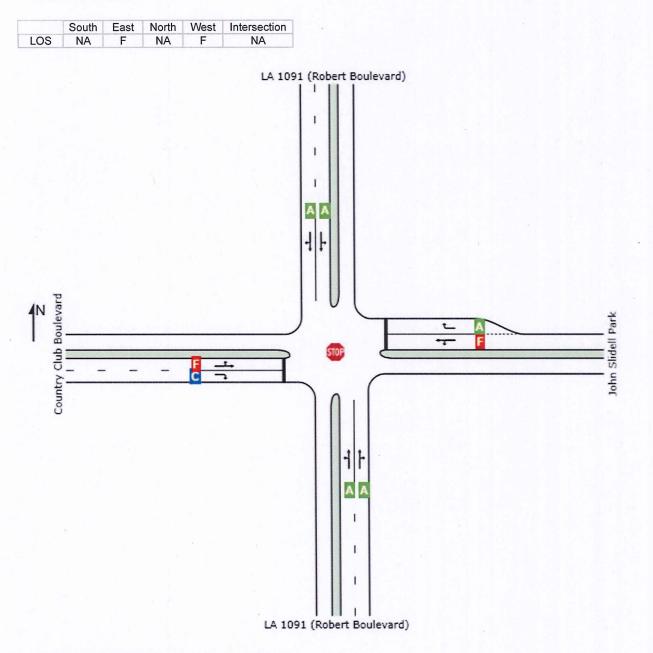
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 4:02:13 PM

Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated 041818.sip6

Site: A.M. Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Capacity): Results for 19 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 4:10:01 PM

Site: A.M. Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Stop (Two-Way) Design Life Analysis (Capacity): Results for 19 years

		rmance - Ve					OFUL Bask	of Ourouro	Prop.	Effective	Average
Mov	OD	Demand		Deg.	Average	Level of Service	95% Back o Vehicles	Distance	Queued	Stop Rate	Speed
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	venicies veh	ft	Quedeu	per veh	mph
South:	LA 1091 (Ro	bert Bouleva			000						
3	L2	32	0.0	0.254	5.4	LOS A	0.6	16.4	0.17	0.01	41.1
8	T1	455	4.8	0.254	0.7	LOS A	0.6	16.4	0.14	0.01	43.6
18	R2	13	0.0	0.051	0.0	LOS A	0.0	0.0	0.00	0.00	41.8
Appro	ach	499	4.4	0.254	1.0	NA	0.6	16.4	0.14	0.01	43.4
East:	John Slidell F	Park									
1	L2	14	0.0	0.310	99.7	LOS F	1.0	25.2	0.97	0.99	14.3
6	T1	1	0.0	0.310	56.5	LOS F	1.0	25.2	0.97	0.99	14.3
16	R2	5	0.0	0.011	6.2	LOS A	0.0	1.1	0.62	0.46	33.8
Appro	ach	20	0.0	0.310	73.8	LOS F	1.0	25.2	0.88	0.85	16.7
North:	LA 1091 (Ro	bert Bouleva	rd)								
7	L2	6	0.0	0.351	3.1	LOS A	0.1	2.7	0.02	0.00	42.4
4	T1	721	4.8	0.351	0.1	LOS A	0.1	2.7	0.01	0.00	44.
14	R2	27	0.0	0.070	0.0	LOS A	0.0	0.0	0.00	0.00	41.4
Appro	ach	754	4.6	0.351	0.1	NA	0.1	2.7	0.01	0.00	44.
West:	Country Clul	b Boulevard									
5	L2	57	0.0	0.975	183.4	LOS F	5.5	136.9	1.00	1.24	9.:
2	T1	1	0.0	0.975	153.9	LOS F	5.5	136.9	1.00	1.24	9.
12	R2	83	0.0	0.377	22.8	LOS C	1.7	42.1	0.86	0.92	27.
Appro	bach	140	0.0	0.975	88.6	LOS F	5.5	136.9	0.92	1.05	15.
All Ve	hicles	1414	4.0	0.975	10.2	NA	5.5	136.9	0.16	0.12	36.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

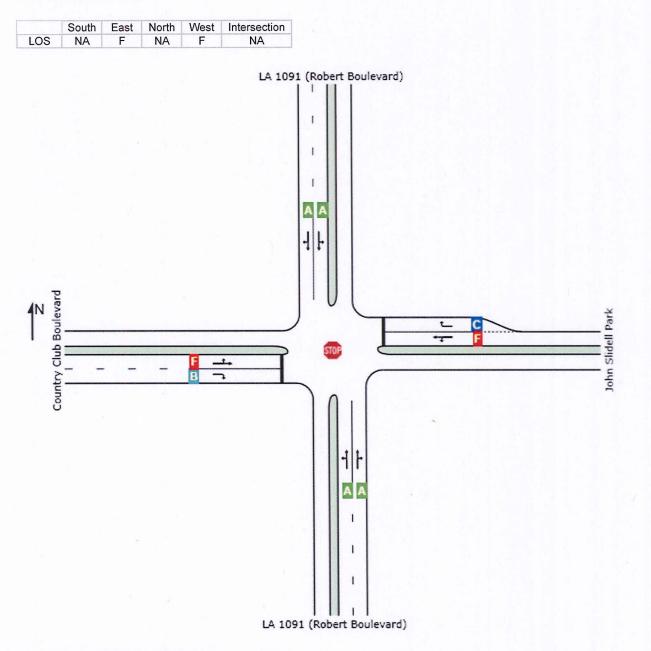
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 4:10:01 PM

Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated 041818.sip6

Site: P.M. Peak Hour_Build Year-3 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:01:02 AM

Site: P.M. Peak Hour_Build Year-3 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 3 years

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	ft		per veh	mph
South:	: LA 1091 (Ro	bert Bouleva									
3	L2	84	0.0	0.450	5.4	LOS A	2.0	50.9	0.25	0.03	40.5
8	T1	736	4.8	0.450	1.2	LOS A	2.0	50.9	0.22	0.03	42.7
18	R2	55	0.0	0.090	0.0	LOS A	0.0	0.0	0.00	0.00	40.7
Appro	ach	874	4.0	0.450	1.5	NA	2.0	50.9	0.21	0.03	42.4
East:	John Slidell F	ark									
1	L2	20	0.0	0.876	322.4	LOS F	3.2	80.5	1.00	1.09	5.9
6	T1	1	0.0	0.876	240.9	LOS F	3.2	80.5	1.00	1.09	5.9
16	R2	19	0.0	0.091	18.0	LOS C	0.3	8.2	0.82	0.82	28.8
Appro	ach	40	0.0	0.876	176.3	LOS F	3.2	80.5	0.91	0.96	9.4
North:	: LA 1091 (Ro	bert Bouleva	rd)								
7	L2	36	0.0	0.335	6.6	LOSA	0.9	23.9	0.17	0.01	41.1
4	T1	582	4.8	0.335	0.9	LOS A	0.9	23.9	0.15	0.01	43.3
14	R2	43	0.0	0.067	0.0	LOS A	0.0	0.0	0.00	0.00	40.6
Appro	ach	661	4.2	0.335	1.1	NA	0.9	23.9	0.14	0.01	43.0
West:	Country Club	Boulevard									
5	L2	49	0.0	1.917	656.8	LOS F	14.1	352.1	1.00	1.38	3.1
2	T1	4	0.0	1.917	593.4	LOS F	14.1	352.1	1.00	1.38	3.1
12	R2	58	0.0	0.174	11.0	LOS B	0.7	17.6	0.74	0.74	31.6
Appro	bach	111	0.0	1.917	318.7	LOS F	14.1	352.1	0.86	1.05	5.9
All Ve	hicles	1686	3.8	1.917	26.4	NA	14.1	352.1	0.24	0.11	28.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

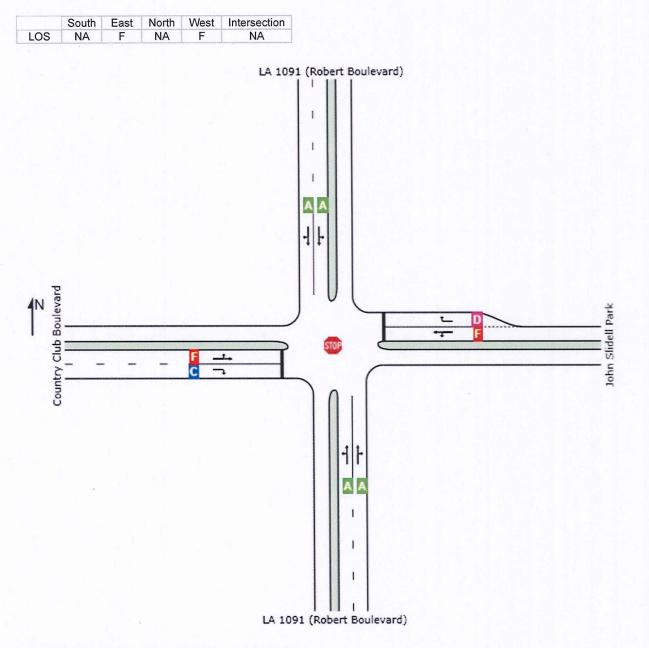
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:01:02 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

We site: P.M. Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:05:02 AM

Site: P.M. Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Final Year): Results for 23 years

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	ft		per veh	mph
South:	LA 1091 (Rc	bert Bouleva	rd)								
3	L2	84	0.0	0.526	7.8	LOS A	2.7	69.4	0.30	0.04	40.1
8	T1	863	4.8	0.526	1.6	LOS A	2.7	69.4	0.25	0.03	42.4
18	R2	64	0.0	0.105	0.0	LOS A	0.0	0.0	0.00	0.00	40.7
Appro	ach	1011	4.1	0.526	2.0	NA	2.7	69.4	0.24	0.03	42.1
East:	John Slidell P	ark									
1	L2	24	0.0	2.530	1292.0	LOS F	11.5	288.4	1.00	1.18	1.7
6	T1	1	0.0	2.530	1085.2	LOS F	11.5	288.4	1.00	1.18	1.7
16	R2	22	0.0	0.168	29.7	LOS D	0.6	14.3	0.90	0.90	25.1
Appro	ach	47	0.0	2.530	688.3	LOS F	11.5	288.4	0.95	1.04	3.0
North:	LA 1091 (Ro	bert Bouleva	rd)								
7	L2	42	0.0	0.402	9.9	LOS A	1.6	41.0	0.23	0.02	40.4
4	T1	683	4.8	0.402	1.5	LOS A	1.6	41.0	0.20	0.02	42.7
14	R2	43	0.0	0.080	0.0	LOS A	0.0	0.0	0.00	0.00	40.9
Appro	ach	768	4.3	0.402	1.9	NA	1.6	41.0	0.19	0.01	42.4
West:	Country Club	Boulevard									
5	L2	49	0.0	4.663	2115.4	LOS F	25.7	642.6	1.00	1.25	1.0
2	T1	4	0.0	4.663	1955.6	LOS F	25.7	642.6	1.00	1.25	1.0
12	R2	58	0.0	0.233	16.7	LOS C	0.9	23.6	0.82	0.83	29.3
Appro	ach	111	0.0	4.663	1018.6	LOS F	25.7	642.6	0.90	1.04	2.1
All Ve	hicles	1936	3.8	4.663	76.8	NA	25.7	642.6	0.27	0.11	17.3

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

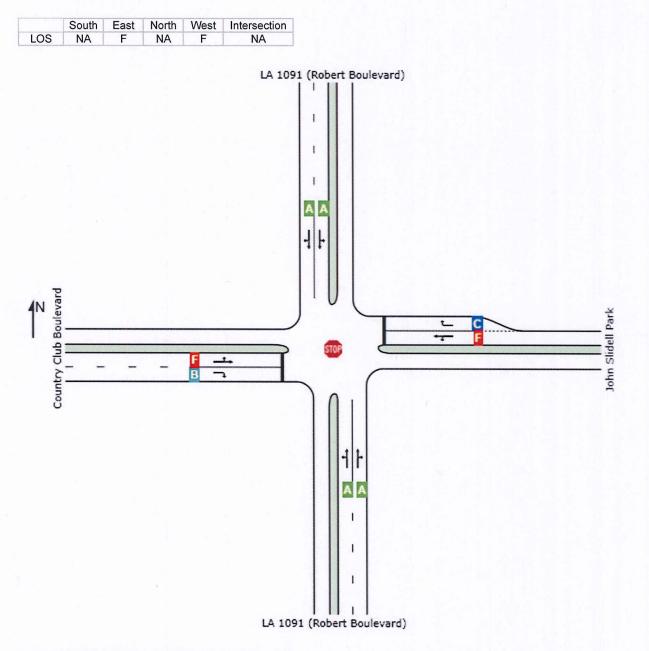
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:05:02 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

5 Site: P.M. Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Capacity): Results for 0 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:08:02 AM

Site: P.M. Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Stop (Two-Way) Design Life Analysis (Capacity): Results for 0 years

Mov	ment Perfo OD	Demand	and the second se	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
10	1410 4	veh/h	%	v/c	sec	0011100	veh	ft		per veh	mph
South:	LA 1091 (Ro	obert Bouleva	rd)								
3	L2	84	0.0	0.440	5.1	LOSA	1.9	48.8	0.25	0.03	40.5
8	T1	718	4.8	0.440	1.1	LOS A	1.9	48.8	0.21	0.03	42.8
18	R2	53	0.0	0.088	0.0	LOS A	0.0	0.0	0.00	0.00	40.7
Approa	ach	855	4.0	0.440	1.5	NA	1.9	48.8	0.20	0.03	42.4
East:	John Slidell F	Park									
1	L2	20	0.0	0.764	265.0	LOS F	2.7	66.8	0.99	1.07	6.9
6	T1	1	0.0	0.764	193.1	LOS F	2.7	66.8	0.99	1.07	6.9
16	R2	18	0.0	0.084	16.8	LOS C	0.3	7.6	0.81	0.81	29.2
Appro	ach	39	0.0	0.764	145.8	LOS F	2.7	66.8	0.91	0.95	10.8
North:	LA 1091 (Ro	bert Bouleva	rd)								
7	L2	35	0.0	0.327	6.3	LOS A	0.9	22.2	0.16	0.01	41.2
4	T1	568	4.8	0.327	0.8	LOS A	0.9	22.2	0.14	0.01	43.4
14	R2	43	0.0	0.065	0.0	LOS A	0.0	0.0	0.00	0.00	40.5
Appro	ach	647	4.2	0.327	1.1	NA	0.9	22.2	0.13	0.01	43.1
West:	Country Clu	b Boulevard									
5	L2	49	0.0	1.713	550.3	LOS F	12.6	315.4	1.00	1.38	3.7
2	T1	4	0.0	1.713	493.9	LOS F	12.6	315.4	1.00	1.38	3.7
12	R2	58	0.0	0.168	10.5	LOS B	0.7	17.1	0.72	0.72	31.8
Appro	ach	111	0.0	1.713	267.6	LOS F	12.6	315.4	0.86	1.04	6.8
All Ve	hicles	1652	3.7	1.713	22.6	NA	12.6	315.4	0.24	0.11	30.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

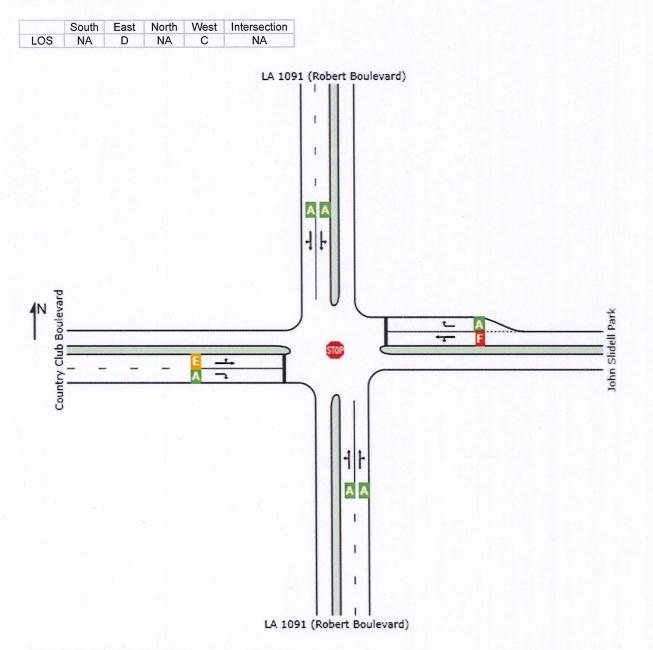
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:08:02 AM


Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

Site: Midday Weekend Peak Hour_Build Year-3 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Stop (Two-Way) Decign Life Analysis (Final Year): Results for 3 years

Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:17:44 AM

1 Site: Midday Weekend Peak Hour_Build Year-3 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park Midday Weekend Peak Hour Stop (Two-Way)

Design Life Analysis (Final Year): Results for 3 years

Move	ment Perfo	ormance - Ve	hicles					15 ARAS		A Planta DV	
Mov ID	OD Mov	Demano Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
0 11	1.4.4004 (D	veh/h	%	v/c	sec		veh	ft		per veh	mph
		obert Bouleva									
3	L2	58	0.0	0.282	2.8	LOS A	0.7	18.7	0.18	0.02	41.2
8	T1	486	4.8	0.282	0.5	LOS A	0.7	18.7	0.15	0.02	43.5
18	R2	19	0.0	0.056	0.0	LOS A	0.0	0.0	0.00	0.00	41.5
Approa	ach	563	4.1	0.282	0.7	NA	0.7	18.7	0.15	0.02	43.2
East:	John Slidell F	Park									
1	L2	35	0.0	0.372	52.0	LOS F	1.4	35.6	0.93	0.98	20.3
6	T1	3	0.0	0.372	33.8	LOS D	1.4	35.6	0.93	0.98	20.3
16	R2	21	0.0	0.050	7.3	LOSA	0.2	5.1	0.64	0.57	33.3
Approa	ach	59	0.0	0.372	34.9	LOS D	1.4	35.6	0.83	0.83	23.6
North:	LA 1091 (Ro	bert Bouleva	d)								
7	L2	13	0.0	0.235	2.8	LOSA	0.2	4.5	0.05	0.00	42.2
4	T1	446	4.8	0.235	0.1	LOSA	0.2	4.5	0.05	0.00	44.3
14	R2	35	0.0	0.047	0.0	LOS A	0.0	0.0	0.00	0.00	40.3
Approa	ach	495	4.3	0.235	0.2	NA	0.2	4.5	0.04	0.00	44.0
West:	Country Clui	o Boulevard									
5	L2	35	0.0	0.328	45.5	LOS E	1.3	31.4	0.93	0.96	21.4
2	T1	1	0.0	0.328	30.6	LOS D	1.3	31.4	0.93	0.96	21.4
12	R2	68	0.0	0.147	6.8	LOS A	0.6	15.9	0.64	0.62	33.5
Approa	ach	104	0.0	0.328	19.9	LOS C	1.3	31.4	0.74	0.74	28.0
All Veł	nicles	1221	3.7	0.372	3.8	NA	1.4	35.6	0.19	0.11	40.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

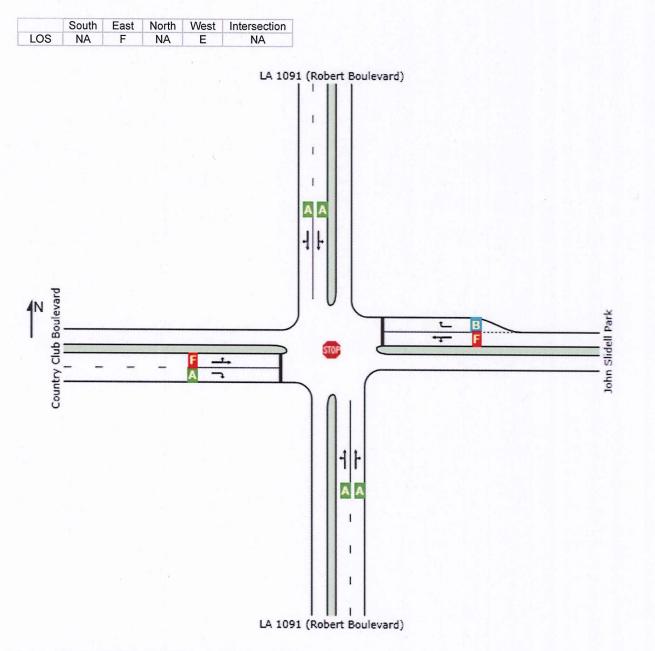
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:17:44 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

Site: Midday Weekend Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:20:44 AM

nte: Midday Weekend Peak Hour_Design Year-23 Year (Final) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Stop (Two-Way)

Design Life Analysis (Final Year): Results for 23 years

Move	ment Perfo	ormance - Ve	ehicles					C. Startes	S. 18	Constanting	
Mov ID	OD Mov	Demano Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	LA 1091 (R	veh/h obert Bouleva	% urd)	v/c	Sec		veh	ft		per veh	mph
3	L2	58	0.0	0.327	3.7	LOS A	0.9	24.5	0.19	0.02	41.1
8	T1	571	4.8	0.327	0.7	LOSA	0.9	24.5	0.16	0.02	41.1
18	R2	22	0.0	0.065	0.0	LOSA	0.0	0.0	0.00	0.02	43.5
Approa	ach	650	4.2	0.327	0.9	NA	0.9	24.5	0.15	0.02	43.2
East:	John Slidell I	Park									
1	L2	40	0.0	0.692	117.6	LOS F	2.9	71.3	0.98	1.08	12.7
6	T1	3	0.0	0.692	86.3	LOS F	2.9	71.3	0.98	1.08	12.7
16	R2	25	0.0	0.073	10.0	LOS B	0.3	7.2	0.70	0.69	32.0
Approa	ach	69	0.0	0.692	77.2	LOS F	2.9	71.3	0.88	0.94	16.3
North:	LA 1091 (R	obert Bouleva	rd)								
7	L2	16	0.0	0.274	3.8	LOS A	0.3	6.6	0.06	0.00	42.1
4	T1	524	4.8	0.274	0.2	LOS A	0.3	6.6	0.05	0.00	44.3
14	R2	35	0.0	0.055	0.0	LOSA	0.0	0.0	0.00	0.00	40.6
Approa	ach	574	4.4	0.274	0.3	NA	0.3	6.6	0.05	0.00	44.0
West:	Country Clu	b Boulevard									
5	L2	35	0.0	0.527	89.3	LOS F	2.0	50.1	0.97	1.03	15.1
2	T1	1	0.0	0.527	63.5	LOS F	2.0	50.1	0.97	1.03	15.1
12	R2	68	0.0	0.177	9.0	LOSA	0.7	18.6	0.69	0.69	32.5
Approa	ach	104	0.0	0.527	36.4	LOS E	2.0	50.1	0.78	0.81	23.2
All Ver	nicles	1397	3.8	0.692	7.0	NA	2.9	71.3	0.19	0.12	38.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

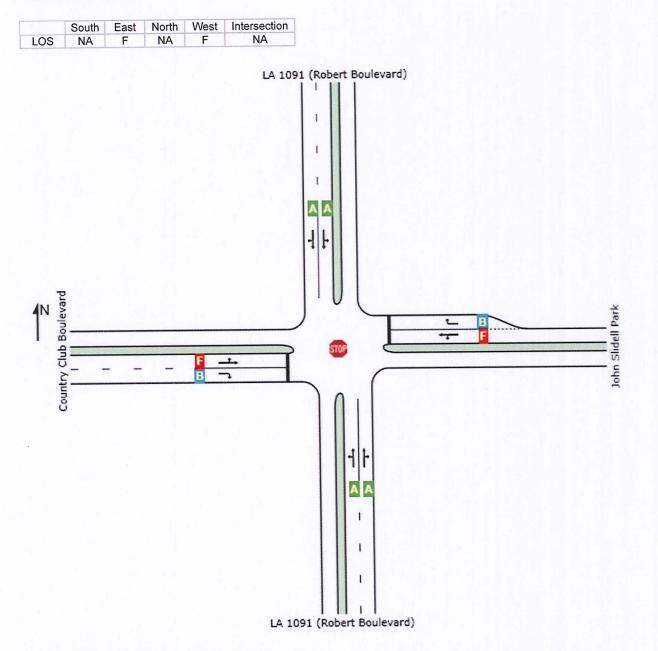
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:20:44 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

🚳 Site: Midday Weekend Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Stop (Two-Way) Design Life Analysis (Capacity): Results for 35 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:24:46 AM

Site: Midday Weekend Peak Hour_Practical Capacity (Capacity) Two-Way Stop

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Stop (Two-Way)

Design Life Analysis (Capacity): Results for 35 years

Move	ment Perfo	ormance - Ve	hicles			A ALSO AND		Carl Star	Ser Stand	and the second	
Mov	OD	Demano		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	LA 1091 (R	veh/h obert Bouleva	% rd)	v/c	sec	and the second se	veh	ft		per veh	mph
3	L2 L2	58	0.0	0.348	4.4	LOS A	1.1	27.9	0.19	0.02	41.0
8	T1	628	1.0	0.348	0.8	LOSA	1.1	27.9	0.16	0.02	43.4
18	R2	24	0.0	0.070	0.0	LOSA	0.0	0.0	0.00	0.00	41.5
Appro		710	0.9	0.348	1.0	NA	1.1	27.9	0.16	0.02	43.1
East:	John Slidell F	Park									
1	L2	45	0.0	0.987	215.3	LOS F	5.1	128.4	1.00	1.21	8.2
6	T1	3	0.0	0.987	173.1	LOS F	5.1	128.4	1.00	1.21	8.2
16	R2	27	0.0	0.088	11.4	LOS B	0.3	8.6	0.73	0.73	31.4
Appro	ach	75	0.0	0.987	139.3	LOS F	5.1	128.4	0.90	1.04	11.2
North:	LA 1091 (Ro	obert Bouleva	rd)								
7	L2	17	0.0	0.300	4.4	LOS A	0.3	8.3	0.07	0.00	42.0
4	T1	576	4.8	0.300	0.3	LOS A	0.3	8.3	0.06	0.00	44.2
14	R2	35	0.0	0.060	0.0	LOS A	0.0	0.0	0.00	0.00	40.8
Appro	ach	628	4.4	0.300	0.4	NA	0.3	8.3	0.05	0.00	44.0
West:	Country Clu	b Boulevard									
5	L2	35	0.0	0.690	138.4	LOS F	2.7	67.6	0.98	1.07	11.3
2	T1	1	4.8	0.690	111.9	LOS F	2.7	67.6	0.98	1.07	11.2
12	R2	68	0.0	0.203	11.0	LOS B	0.8	21.0	0.74	0.74	31.6
Appro	ach	104	0.1	0.690	54.5	LOS F	2.7	67.6	0.82	0.86	19.5
All Vel	hicles	1517	2.2	0.987	11.3	NA	5.1	128.4	0.20	0.12	35.5

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

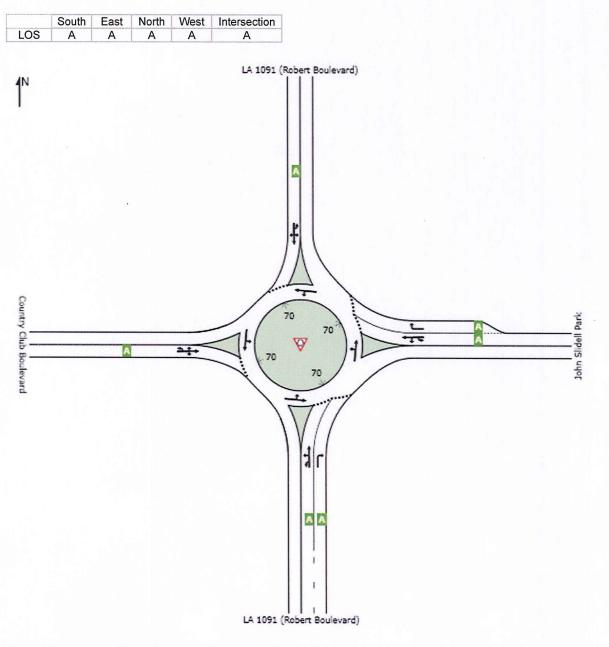
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Thursday, April 19, 2018 10:24:46 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Updated with Two-Way Stop 041818.sip6

Site: A.M. Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Roundabout Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:30:11 AM

Site: A.M. Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park A.M. Peak Roundabout

Design Life Analysis (Final Year): Results for 3 years

Mov	OD	Demano	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	0011100	veh	ft	accuca	per veh	mph
South:	LA 1091 (Ro	bert Bouleva	rd)								
Зu	U	1	0.0	0.358	0.5	LOS A	2.7	69.4	0.31	0.14	39.4
3	L2	32	0.0	0.358	0.5	LOS A	2.7	69.4	0.31	0.14	38.7
8	T1	401	4.8	0.358	0.5	LOS A	2.7	69.4	0.31	0.14	38.1
18	R2	11	0.0	0.014	0.7	LOS A	0.1	1.7	0.26	0.10	38.5
Approa	ach	445	4.3	0.358	0.5	LOS A	2.7	69.4	0.31	0.14	38.2
East: J	Iohn Slidell F	Park									
1u	U	1	0.0	0.016	2.5	LOSA	0.1	2.1	0.56	0.36	36.3
1	L2	12	0.0	0.016	2.5	LOS A	0.1	2.1	0.56	0.36	35.7
6	T1	1	0.0	0.016	2.5	LOS A	0.1	2.1	0.56	0.36	35.9
16	R2	4	0.0	0.008	4.3	LOS A	0.0	0.9	0.60	0.39	36.4
Approa	ach	19	0.0	0.016	2.9	LOS A	0.1	2.1	0.57	0.37	35.9
North:	LA 1091 (Ro	bert Bouleva	rd)								
7u	U	1	0.0	0.632	0.8	LOSA	6.7	172.5	0.39	0.18	39.3
7	L2	6	0.0	0.632	0.8	LOS A	6.7	172.5	0.39	0.18	38.6
4	T1	635	4.8	0.632	0.8	LOS A	6.7	172.5	0.39	0.18	38.0
14	R2	27	0.0	0.632	0.8	LOS A	6.7	172.5	0.39	0.18	37.8
Approa	ach	668	4.6	0.632	0.8	LOS A	6.7	172.5	0.39	0.18	38.0
West:	Country Club	Boulevard									
5u	U	1	0.0	0.242	5.7	LOS A	1.4	35.1	0.75	0.70	35.9
5	L2	57	0.0	0.242	5.7	LOS A	1.4	35.1	0.75	0.70	35.4
2	T1	1	0.0	0.242	5.7	LOS A	1.4	35.1	0.75	0.70	35.5
12	R2	83	0.0	0.242	5.7	LOS A	1.4	35.1	0.75	0.70	34.7
Approa	ach	141	0.0	0.242	5.7	LOS A	1.4	35.1	0.75	0.70	35.0
All Veh	nicles	1273	3.9	0.632	1.3	LOSA	6.7	172.5	0.41	0.23	37.7

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

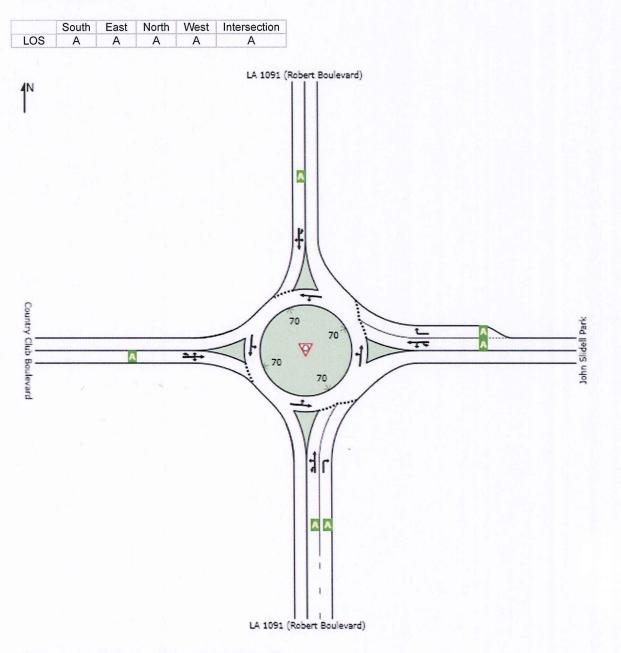
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:30:11 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-5079\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert) Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

V Site: A.M. Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Roundabout Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:16:24 PM

V Site: A.M. Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Roundabout Design Life Analysis (Final Year): Results for 23 years

Mov	OD	Demano	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	ft		per veh	mp
South:		bert Bouleva									
3u	U	1	0.0	0.379	0.4	LOS A	3.0	77.2	0.31	0.14	39.
3	L2	32	0.0	0.379	0.4	LOS A	3.0	77.2	0.31	0.14	38.
8	T1	470	4.8	0.379	0.4	LOS A	3.0	77.2	0.31	0.14	38.
18	R2	13	0.0	0.014	0.5	LOS A	0.1	1.8	0.25	0.09	38.
Approa	ach	516	4.4	0.379	0.4	LOS A	3.0	77.2	0.31	0.14	38.
East:	Iohn Slidell F	Park									
1u	U	1	0.0	0.018	2.6	LOS A	0.1	2.5	0.60	0.38	36.
1	L2	14	0.0	0.018	2.6	LOS A	0.1	2.5	0.60	0.38	35
6	T1	1	0.0	0.018	2.6	LOSA	0.1	2.5	0.60	0.38	35
16	R2	5	0.0	0.008	4.1	LOS A	0.0	1.0	0.62	0.41	36
Approa	ach	22	0.0	0.018	2.9	LOSA	0.1	2.5	0.60	0.39	35
North:	LA 1091 (Ro	bert Bouleva	rd)								
7u	U	1	0.0	0.674	0.8	LOS A	7.8	201.0	0.42	0.19	39
7	L2	7	0.0	0.674	0.8	LOS A	7.8	201.0	0.42	0.19	38
4	T1	744	4.8	0.674	0.8	LOS A	7.8	201.0	0.42	0.19	37
14	R2	27	0.0	0.674	0.8	LOS A	7.8	201.0	0.42	0.19	37
Appro	ach	779	4.6	0.674	0.8	LOS A	7.8	201.0	0.42	0.19	37
West:	Country Club	Boulevard									
5u	U	1	0.0	0.240	6.3	LOS A	1.5	37.4	0.80	0.75	35
5	L2	57	0.0	0.240	6.3	LOSA	1.5	37.4	0.80	0.75	35
2	T1	1	0.0	0.240	6.3	LOSA	1.5	37.4	0.80	0.75	35
12	R2	83	0.0	0.240	6.3	LOS A	1.5	37.4	0.80	0.75	34
Appro	ach	141	0.0	0.240	6.3	LOS A	1.5	37.4	0.80	0.75	34
All Vel	nicles	1458	4.0	0.674	1.3	LOS A	7.8	201.0	0.42	0.23	37

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

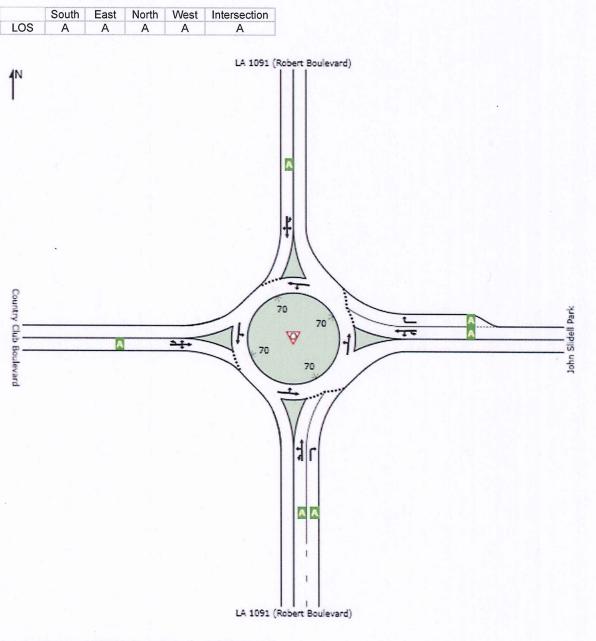
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:16:24 PM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

Site: A.M. Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Roundabout Design Life Analysis (Capacity): Results for 50 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:17:24 PM

Site: A.M. Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_A.M. Peak Roundabout

Design Life Analysis (Capacity): Results for 50 years

Move	ment Perfo	ormance - Ve	ehicles				State State States				A STATE
Mov ID	OD Mov	Demano Total veh/h	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	LA 1091 (R	obert Bouleva	% (rd)	v/c	sec		veh	ft		per veh	mph
Зu	U	2	0.0	0.467	0.5	LOS A	4.2	109.0	0.36	0.17	39.2
3	L2	32	0.0	0.467	0.5	LOSA	4.2	109.0	0.36	0.17	38.6
8	T1	583	4.8	0.467	0.5	LOSA	4.2	109.0	0.36	0.17	38.0
18	R2	16	0.0	0.018	0.6	LOS A	0.1	2.3	0.26	0.10	38.5
Approa	ach	632	4.4	0.467	0.5	LOSA	4.2	109.0	0.36	0.17	38.0
East:	John Slidell F	Park									
1u	U	2	0.0	0.024	3.4	LOSA	0.1	3.6	0.67	0.46	35.7
1	L2	18	0.0	0.024	3.4	LOSA	0.1	3.6	0.67	0.46	35.2
6	T1	1	0.0	0.024	3.4	LOS A	0.1	3.6	0.67	0.46	35.3
16	R2	6	0.0	0.012	5.1	LOSA	0.1	1.5	0.68	0.48	35.9
Approa	ach	27	0.0	0.024	3.8	LOS A	0.1	3.6	0.68	0.46	35.4
North:	LA 1091 (Rc	bert Bouleva	rd)								
7u	U	2	0.0	0.835	1.4	LOS A	15.6	403.5	0.70	0.33	38.1
7	L2	8	0.0	0.835	1.4	LOS A	15.6	403.5	0.70	0.33	37.4
4	T1	923	4.8	0.835	1.5	LOS A	15.6	403.5	0.70	0.33	36.9
14	R2	27	0.0	0.835	1.4	LOS A	15.6	403.5	0.70	0.33	36.7
Approa	ach	960	4.6	0.835	1.5	LOS A	15.6	403.5	0.70	0.33	36.9
West:	Country Club	Boulevard									
5u	U	1	0.0	0.345	9.5	LOS A	2.4	60.1	0.95	0.95	33.9
5	L2	57	0.0	0.345	9.5	LOS A	2.4	60.1	0.95	0.95	33.4
2	T1	1	0.0	0.345	9.5	LOS A	2.4	60.1	0.95	0.95	33.6
12	R2	83	0.0	0.345	9.5	LOS A	2.4	60.1	0.95	0.95	32.8
Approa	ach	141	0.0	0.345	9.5	LOS A	2.4	60.1	0.95	0.95	33.1
All Ver	nicles	1760	4.1	0.835	1.8	LOS A	15.6	403.5	0.60	0.33	36.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

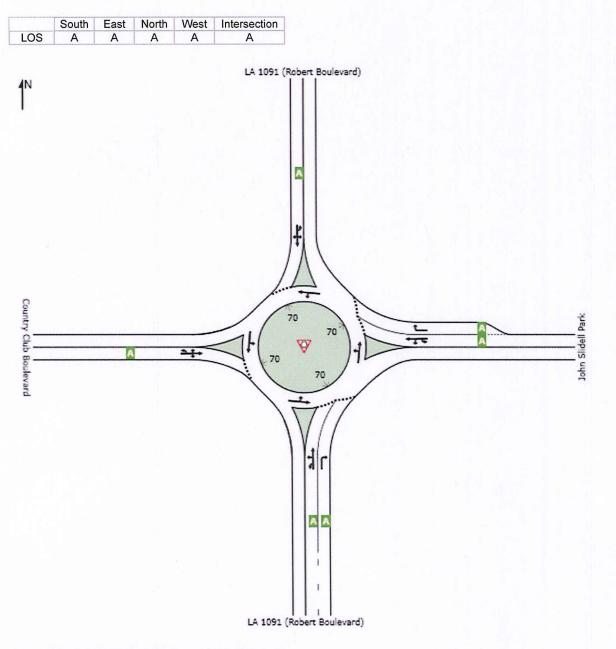
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:17:24 PM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

Site: P.M. Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:38:29 AM

Site: P.M. Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout Design Life Analysis (Final Year): Results for 3 years

Move	ment Perfo	rmance - Ve	hicles								
Mov ID	OD Mov	Demano Total		Deg.	Average	Level of	95% Back		Prop.	Effective Stop Boto	Average
U	IVIOV	veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance ft	Queued	Stop Rate per veh	Speed mph
South:	LA 1091 (Ro	bert Bouleva			000		Ven			perven	mpi
3u	U	1	0.0	0.691	1.2	LOS A	8.1	209.7	0.57	0.31	38.4
3	L2	84	0.0	0.691	1.2	LOS A	8.1	209.7	0.57	0.31	37.7
8	T1	736	4.8	0.691	1.3	LOS A	8.1	209.7	0.57	0.31	37.1
18	R2	55	0.0	0.071	1.0	LOS A	0.4	8.8	0.31	0.16	38.3
Approa	ach	875	4.0	0.691	1.2	LOS A	8.1	209.7	0.55	0.30	37.3
East: J	John Slidell F	Park									
1u	U	1	0.0	0.040	6.1	LOSA	0.3	6.4	0.82	0.64	34.3
1	L2	20	0.0	0.040	6.1	LOS A	0.3	6.4	0.82	0.64	33.8
6	T1	1	0.0	0.040	6.1	LOS A	0.3	6.4	0.82	0.64	33.9
16	R2	19	0.0	0.039	6.9	LOS A	0.2	5.9	0.81	0.65	34.9
Approa	ach	41	0.0	0.040	6.5	LOS A	0.3	6.4	0.82	0.64	34.3
North:	LA 1091 (Ro	bert Bouleva	rd)								
7u	U	1	0.0	0.674	1.7	LOS A	7.2	186.8	0.63	0.39	38.3
7	L2	36	0.0	0.674	1.7	LOS A	7.2	186.8	0.63	0.39	37.
4	T1	582	4.8	0.674	1.8	LOS A	7.2	186.8	0.63	0.39	37.1
14	R2	43	0.0	0.674	1.7	LOSA	7.2	186.8	0.63	0.39	36.9
Approa	ach	662	4.2	0.674	1.8	LOS A	7.2	186.8	0.63	0.39	37.1
West:	Country Club	Boulevard									
5u	U	1	0.0	0.198	5.4	LOSA	1.2	29.2	0.76	0.69	36.1
5	L2	49	0.0	0.198	5.4	LOS A	1.2	29.2	0.76	0.69	35.
2	T1	4	0.0	0.198	5.4	LOS A	1.2	29.2	0.76	0.69	35.6
12	R2	58	0.0	0.198	5.4	LOS A	1.2	29.2	0.76	0.69	34.8
Approa	ach	112	0.0	0.198	5.4	LOS A	1.2	29.2	0.76	0.69	35.1
All Veł	nicles	1691	3.7	0.691	1.9	LOS A	8.1	209.7	0.60	0.37	37.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

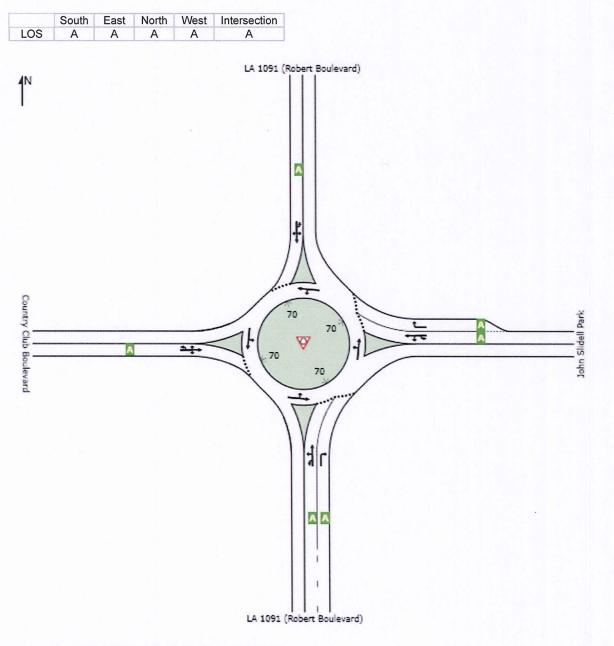
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:38:29 AM

Site: P.M. Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:10:46 PM

Site: P.M. Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout Design Life Analysis (Final Year): Results for 23 years

Movement Performance - Vehicles Demand Flows 95% Back of Queue OD Deg. Average Satn Queued Speed South: LA 1091 (Robert Boulevard) 0.0 LOSA 241.0 0.61 0.33 38.3 3u U 0.730 1.2 93 1 3 L2 84 0.0 0.730 1.2 LOSA 9.3 241.0 0.61 0.33 37.6 8 Τ1 863 4.8 0.730 1.3 LOS A 9.3 241.0 0.61 0.33 37.0 18 **R2** 64 0.0 0.073 0.9 LOS A 0.4 9.3 0.31 0.15 38.3 Approach 1012 1.2 0.32 37.2 4.1 0.730 LOS A 9.3 241.0 0.59 East: John Slidell Park 0.0 U 1 0.049 7.4 LOSA 0.3 8.7 0.90 0.70 33.7 1u 1 12 24 0.0 0.049 7.4 LOS A 0.3 8.7 0.90 0.70 33.2 6 T1 1 0.0 0.049 7.4 LOSA 0.3 8.7 0.90 0.70 33.3 **R**2 22 0.0 0.052 LOSA 16 8.7 0.3 8.4 0.88 0.73 33.9 0.0 0.052 LOS A Approach 48 8.0 0.3 8.7 0.89 0.71 33.5 North: LA 1091 (Robert Boulevard) LOS A 7u U 1 0.0 0.712 1.6 8.4 216.0 0.66 0.40 38.2 7 L2 42 0.0 0.712 1.6 LOSA 8.4 216.0 0.66 0.40 37.5 T1 683 4.8 0.712 1.8 LOS A 216.0 0.66 4 8.4 0.40 37.0 R2 14 43 0.0 0.712 1.6 LOS A 8.4 216.0 0.66 0.40 36.8 Approach 769 4.3 0.712 1.7 LOS A 8.4 216.0 0.66 0.40 37.0 West: Country Club Boulevard 5u U 0.0 0.200 5.8 LOSA 1.3 31.9 0.82 0.74 1 35.8 5 L2 49 0.0 0.200 5.8 LOSA 1.3 31.9 0.82 0.74 35.2 2 T1 4 0.0 0.200 5.8 LOSA 1.3 31.9 0.82 0.74 35.4 12 R2 58 0.0 0.200 5.8 LOS A 0.82 1.3 31.9 0.74 34.6 Approach 112 0.0 0.200 5.8 LOSA 1.3 31.9 0.82 0.74 34.9 1941 LOSA All Vehicles 3.8 0.730 1.9 9.3 241.0 0.64 0.39 36.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

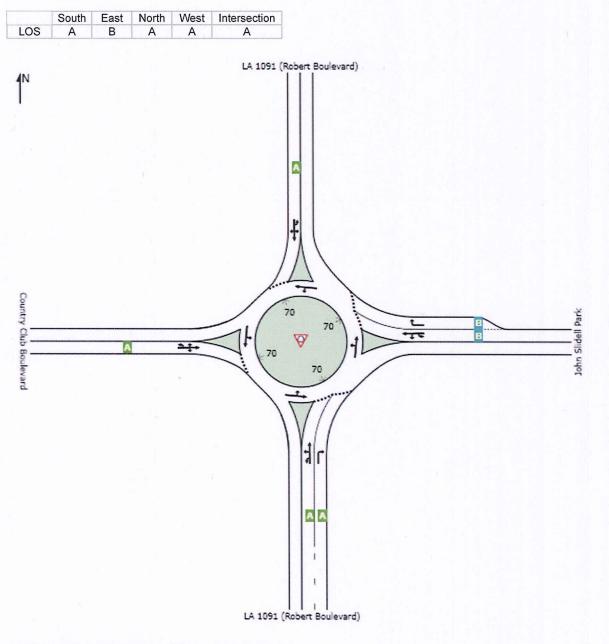
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:10:46 PM

Site: P.M. Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout Design Life Analysis (Capacity): Results for 50 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:15:07 PM

♥ Site: P.M. Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_P.M. Peak Roundabout

Design Life Analysis (Capacity): Results for 50 years

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance ft	Queued	Stop Rate per veh	Speed mpl
South:	LA 1091 (Rc	bert Bouleva									
3u	U	2	0.0	0.900	2.2	LOS A	18.7	484.6	1.00	0.58	36.9
3	L2	84	0.0	0.900	2.2	LOS A	18.7	484.6	1.00	0.58	36.3
В	T1	1070	4.8	0.900	2.4	LOS A	18.7	484.6	1.00	0.58	35.
18	R2	79	0.0	0.092	1.0	LOS A	0.5	11.9	0.33	0.17	38.
Approa	ach	1235	4.2	0.900	2.3	LOS A	18.7	484.6	0.96	0.55	36.
East:	John Slidell P	ark									
1u	U	2	0.0	0.111	14.7	LOS B	0.9	22.9	1.00	0.87	30.
1	L2	29	0.0	0.111	14.7	LOS B	0.9	22.9	1.00	0.87	30
6	T1	1	0.0	0.111	14.7	LOS B	0.9	22.9	1.00	0.87	30
16	R2	28	0.0	0.123	16.9	LOS B	0.9	22.4	1.00	0.93	30
Appro	ach	59	0.0	0.123	15.7	LOS B	0.9	22.9	1.00	0.89	30
North:	LA 1091 (Rc	bert Bouleva	rd)								
7u	U	2	0.0	0.888	4.8	LOS A	19.7	510.6	1.00	0.67	36
7	L2	52	0.0	0.888	4.8	LOS A	19.7	510.6	1.00	0.67	36
4	T1	847	4.8	0.888	5.1	LOS A	19.7	510.6	1.00	0.67	35
14	R2	43	0.0	0.888	4.8	LOS A	19.7	510.6	1.00	0.67	35
Appro	ach	944	4.3	0.888	5.0	LOS A	19.7	510.6	1.00	0.67	35
West:	Country Club	Boulevard									
5u	U	1	0.0	0.305	8.9	LOS A	2.2	54.8	0.97	0.96	34
5	L2	49	0.0	0.305	8.9	LOS A	2.2	54.8	0.97	0.96	33
2	T1	4	0.0	0.305	8.9	LOS A	2.2	54.8	0.97	0.96	33
12	R2	58	0.0	0.305	8.9	LOS A	2.2	54.8	0.97	0.96	33
Appro	ach	112	0.0	0.305	8.9	LOS A	2.2	54.8	0.97	0.96	33
All Ve	hicles	2350	3.9	0.900	4.1	LOSA	19.7	510.6	0.98	0.63	35

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

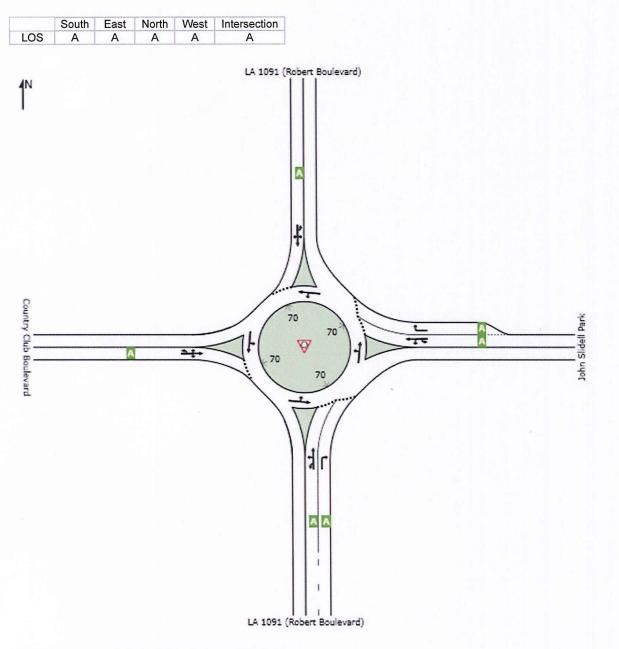
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:15:07 PM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

😵 Site: Midday Weekend Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Final Year): Results for 3 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:19:14 AM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-5079\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert) Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

V Site: Midday Weekend Peak Hour_Build Year-3 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Final Year): Results for 3 years

and the second second		rmance - Ve						10		TT FF	A
Mov ID	OD Mov	Demand Total		Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
טו	IVIOV	veh/h	HV %	v/c	Sec	Service	venicies veh	Distance	Queueu	per veh	mpl
South:	LA 1091 (Ro	bert Bouleva	rd)							porton	
3u	U	1	0.0	0.441	0.4	LOSA	3.5	91.7	0.29	0.12	39.4
3	L2	58	0.0	0.441	0.4	LOS A	3.5	91.7	0.29	0.12	38.
8	T1	486	4.8	0.441	0.5	LOS A	3.5	91.7	0.29	0.12	38.
18	R2	19	0.0	0.023	0.5	LOS A	0.1	2.8	0.22	0.08	38.
Approa	ach	564	4.1	0.441	0.5	LOS A	3.5	91.7	0.29	0.12	38.
East:	Iohn Slidell F	Park									
1u	U	1	0.0	0.047	3.2	LOS A	0.3	6.5	0.62	0.46	35.9
1	L2	35	0.0	0.047	3.2	LOSA	0.3	6.5	0.62	0.46	35.
6	T1	3	0.0	0.047	3.2	LOSA	0.3	6.5	0.62	0.46	35.
16	R2	21	0.0	0.032	4.1	LOS A	0.2	4.1	0.63	0.47	36.
Approa	ach	60	0.0	0.047	3.5	LOS A	0.3	6.5	0.63	0.46	35.
North:	LA 1091 (Rc	bert Bouleva	rd)								
7u	U	1	0.0	0.496	1.1	LOS A	3.9	100.5	0.44	0.25	39.
7	L2	13	0.0	0.496	1.1	LOS A	3.9	100.5	0.44	0.25	38.
4	T1	446	4.8	0.496	1.2	LOS A	3.9	100.5	0.44	0.25	37.
14	R2	35	0.0	0.496	1.1	LOS A	3.9	100.5	0.44	0.25	37.
Appro	ach	496	4.3	0.496	1.2	LOS A	3.9	100.5	0.44	0.25	37.
West:	Country Club	Boulevard									
5u	U	1	0.0	0.153	3.8	LOSA	0.8	20.9	0.64	0.54	37.
5	L2	35	0.0	0.153	3.8	LOS A	0.8	20.9	0.64	0.54	36.
2	T1	1	0.0	0.153	3.8	LOS A	0.8	20.9	0.64	0.54	36.
12	R2	68	0.0	0.153	3.8	LOS A	0.8	20.9	0.64	0.54	36.
Appro	ach	105	0.0	0.153	3.8	LOS A	0.8	20.9	0.64	0.54	36.
All Vel	nicles	1225	3.7	0.496	1.2	LOS A	3.9	100.5	0.40	0.23	37.

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

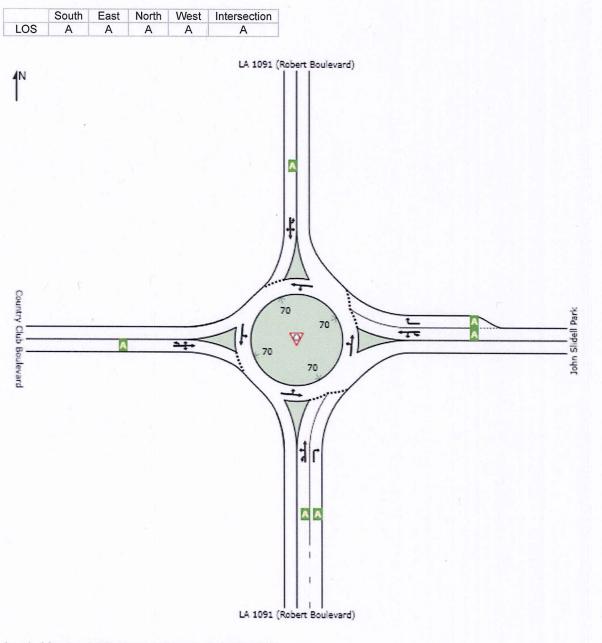
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Friday, March 16, 2018 10:19:14 AM

Site: Midday Weekend Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Final Year): Results for 23 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:21:59 PM

🕅 Site: Midday Weekend Peak Hour_Design Year-23 Year (Final)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Final Year): Results for 23 years

Mov	nent Perfo OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
10		veh/h	%	v/c	sec		veh	ft		per veh	mpl
South:	LA 1091 (Ro	bert Bouleva									
Зu	U	1	0.0	0.466	0.4	LOS A	3.9	101.2	0.30	0.12	39.4
3	L2	58	0.0	0.466	0.4	LOS A	3.9	101.2	0.30	0.12	38.
8	T1	571	4.8	0.466	0.4	LOS A	3.9	101.2	0.30	0.12	38.
18	R2	22	0.0	0.024	0.5	LOS A	0.1	3.0	0.22	0.08	38.
Approa	ach	652	4.2	0.466	0.4	LOS A	3.9	101.2	0.29	0.12	38.
East: J	lohn Slidell F	Park									
1u	U	1	0.0	0.052	3.5	LOS A	0.3	7.6	0.67	0.49	35.
1	L2	40	0.0	0.052	3.5	LOS A	0.3	7.6	0.67	0.49	35.
6	T1	3	0.0	0.052	3.5	LOS A	0.3	7.6	0.67	0.49	35.
16	R2	25	0.0	0.037	4.4	LOS A	0.2	5.0	0.67	0.51	36.
Approa	ach	70	0.0	0.052	3.8	LOS A	0.3	7.6	0.67	0.50	35.
North:	LA 1091 (Ro	bert Bouleva	rd)								
7u	U	1	0.0	0.526	1.1	LOS A	4.4	112.9	0.45	0.26	39.
7	L2	16	0.0	0.526	1.1	LOS A	4.4	112.9	0.45	0.26	38.
4	T1	524	4.8	0.526	1.2	LOS A	4.4	112.9	0.45	0.26	37.
14	R2	35	0.0	0.526	1.1	LOS A	4.4	112.9	0.45	0.26	37.
Approa	ach	575	4.4	0.526	1.2	LOS A	4.4	112.9	0.45	0.26	37.
West:	Country Clul	b Boulevard									
5u	U	1	0.0	0.147	4.0	LOS A	0.8	21.1	0.68	0.57	37.
5	L2	35	0.0	0.147	4.0	LOS A	0.8	21.1	0.68	0.57	36.
2	T1	1	0.0	0.147	4.0	LOS A	0.8	21.1	0.68	0.57	36
12	R2	68	0.0	0.147	4.0	LOS A	0.8	21.1	0.68	0.57	35
Appro	ach	105	0.0	0.147	4.0	LOS A	0.8	21.1	0.68	0.57	36
All Vel	hicles	1402	3.7	0.526	1.2	LOSA	4.4	112.9	0.41	0.23	37

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

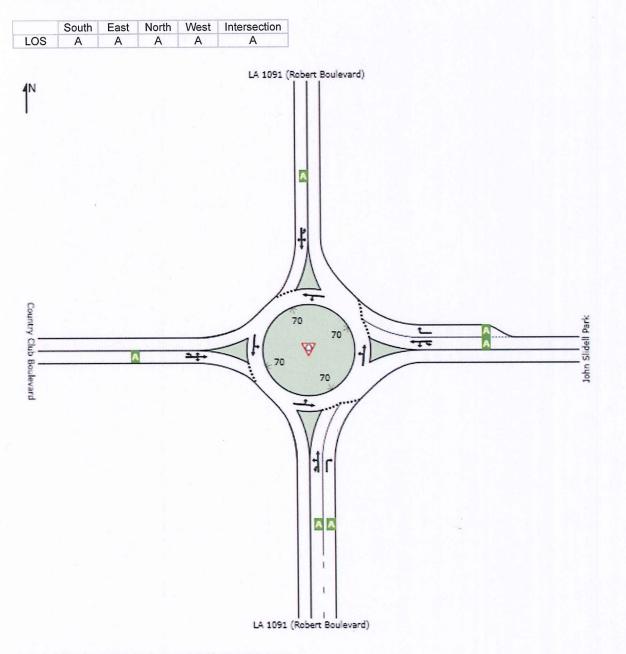
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:21:59 PM Project: C:\Users\WSD\OneDrive\!!JVBU~1-WSD-PC-17867\RPC LA 1091 (Robert) at Country Club Blvd Roundabout Study\SIDRA Files\LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park.sip6

V Site: Midday Weekend Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Capacity): Results for 50 years

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:22:45 PM

V Site: Midday Weekend Peak Hour_Practical Capacity (Capacity)

LA 1091 (Robert Boulevard) @ Country Club Boulevard & John Slidell Park_Midday Weekend Peak Hour Roundabout

Design Life Analysis (Capacity): Results for 50 years

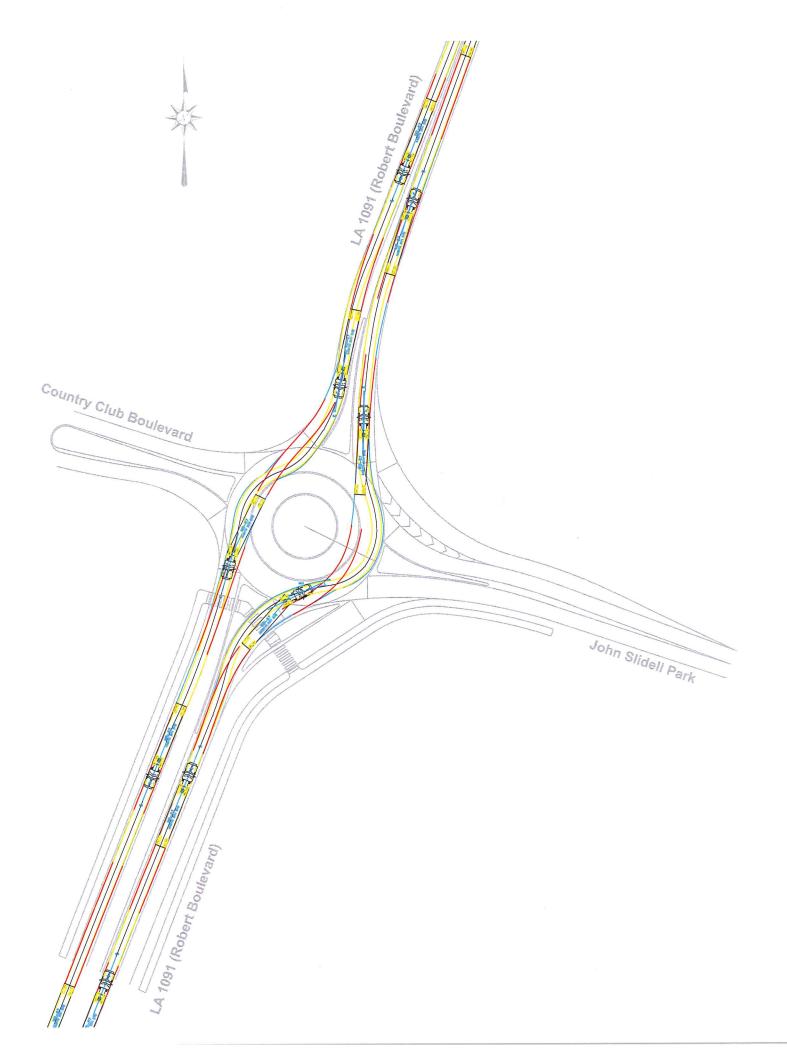
And a local days in the local days	ment Perfo		the state of the s	Dee	Augrage	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	OD Mov	Demand Total	HV	Deg. Satn	Average Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
U	IVIOV	veh/h	%	v/c	sec	Gervice	veh	ft	aacaca	per veh	mpt
South:	LA 1091 (Ro	bert Bouleva									
Зu	U	2	0.0	0.550	0.5	LOS A	5.3	133.5	0.34	0.15	39.3
3	L2	58	0.0	0.550	0.5	LOS A	5.3	133.5	0.34	0.15	38.6
8	T1	707	1.0	0.550	0.5	LOS A	5.3	133.5	0.34	0.15	38.6
18	R2	28	0.0	0.030	0.5	LOS A	0.1	3.7	0.23	0.09	38.
Approa	ach	794	0.9	0.550	0.5	LOS A	5.3	133.5	0.34	0.15	38.6
East: J	John Slidell F	Park									
1u	U	2	0.0	0.072	4.6	LOSA	0.5	11.3	0.75	0.58	35.2
1	L2	50	0.0	0.072	4.6	LOSA	0.5	11.3	0.75	0.58	34.
6	T1	3	0.0	0.072	4.6	LOS A	0.5	11.3	0.75	0.58	34.
16	R2	31	0.0	0.052	5.7	LOS A	0.3	7.4	0.74	0.59	35.
Approa	ach	86	0.0	0.072	5.0	LOS A	0.5	11.3	0.74	0.59	35.
North:	LA 1091 (Ro	bert Bouleva	rd)								
7u	U	2	0.0	0.654	1.5	LOS A	6.7	173.0	0.59	0.36	38.
7	L2	19	0.0	0.654	1.5	LOS A	6.7	173.0	0.59	0.36	37.
4	T1	649	4.8	0.654	1.6	LOS A	6.7	173.0	0.59	0.36	37.
14	R2	35	0.0	0.654	1.5	LOS A	6.7	173.0	0.59	0.36	37.
Appro	ach	705	4.4	0.654	1.6	LOS A	6.7	173.0	0.59	0.36	37.
West:	Country Club	o Boulevard									
5u	U	1	0.0	0.177	5.4	LOS A	1.1	27.2	0.78	0.70	36.
5	L2	35	0.0	0.177	5.4	LOS A	1.1	27.2	0.78	0.70	35.
2	T1	1	4.8	0.177	5.8	LOS A	1.1	27.2	0.78	0.70	35.
12	R2	68	0.0	0.177	5.4	LOS A	1.1	27.2	0.78	0.70	35.
Appro	ach	105	0.0	0.177	5.5	LOS A	1.1	27.2	0.78	0.70	35
All Ve	hicles	1691	2.3	0.654	1.5	LOSA	6.7	173.0	0.49	0.29	37.

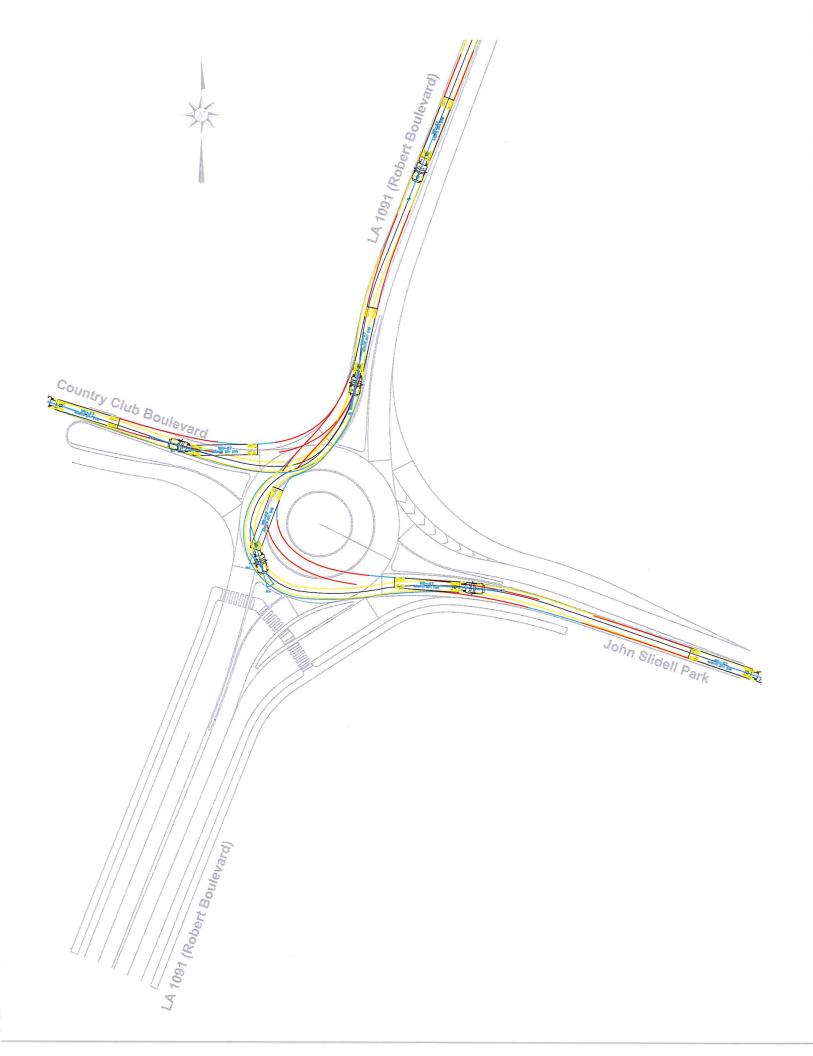
Level of Service (LOS) Method: Delay & v/c (HCM 2010).

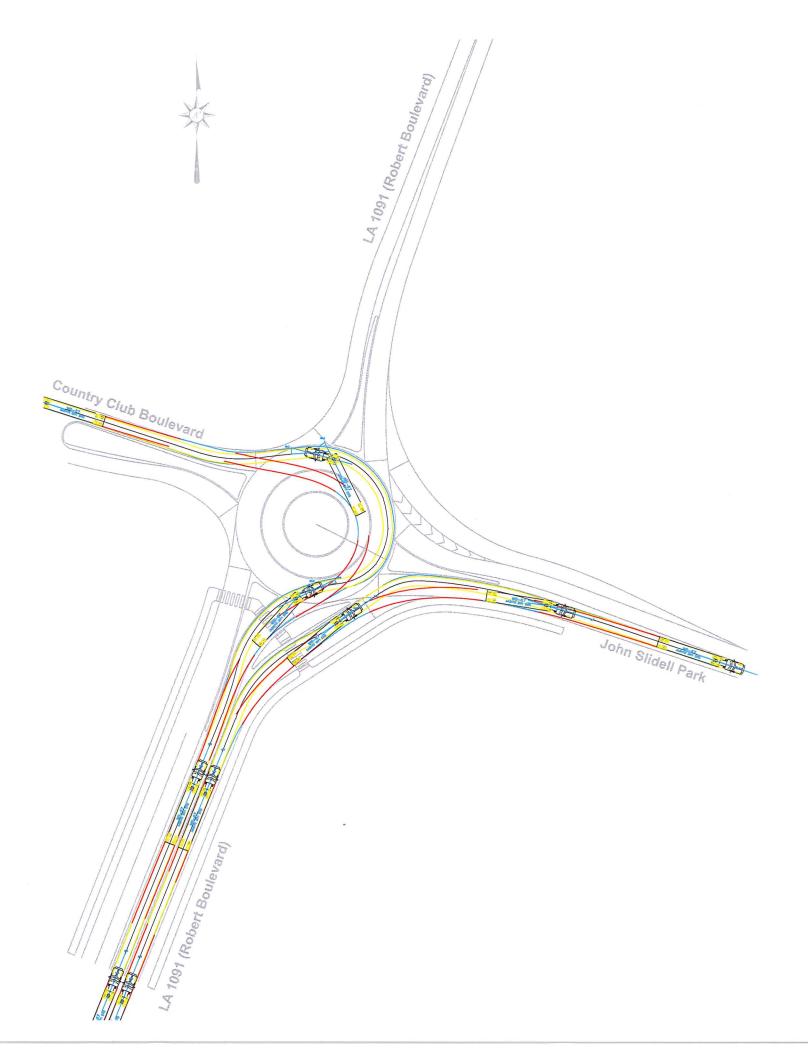
Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).


Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.


SIDRA Standard Delay Model is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option is selected. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: J. V. BURKES & ASSOCIATES | Processed: Wednesday, April 18, 2018 2:22:45 PM

